Impacto de la Preparación de Profesores y Estudiantes en la Adopción del Aprendizaje Virtual en Medio de Covid-19
Palavras-chave:
Covid-19, Higher education, Social imbalance, Technology adoption, Virtual learningEste trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial-SemDerivações 4.0.
Resumo
El efecto letal de Covid-19 ha cambiado el mundo de forma espectacular. El sector de la educación es uno de los más afectados por el cierre oficial de las instituciones educativas en todo el mundo. El gobierno de Bangladesh declaró cerradas todas las actividades en el campus en marzo de 2020. Este artículo explica el efecto de la preparación de profesores y estudiantes en la adopción de clases virtuales considerando el efecto mediador de la tecnología. Para esta investigación se lleva a cabo una encuesta a profesores y estudiantes de universidades públicas y privadas de Bangladesh. Los hallazgos revelaron que las universidades privadas están muy por delante de brindar educación en línea, ya que sus profesores y estudiantes cuentan con la logística y la mentalidad para adoptar el aprendizaje virtual, mientras que las universidades públicas aún no lo han iniciado. Se concluye que la falta de preparación de las universidades públicas creará una brecha masiva entre la educación universitaria pública y privada y los estudiantes rurales y urbanos. El modelo propuesto de esta investigación puede ayudar a los formuladores de políticas y al gobierno en la formulación de pautas de políticas para atraer a todos los estudiantes y profesores a las plataformas de educación virtual, independientemente de su afiliación universitaria.
Downloads
Referências
Adnan, M. (2018). Professional development in the transition to online teaching: The voice of entrant online instructors. ReCALL, 30(1), 88-111. https://doi.org/10.1017/S0958344017000106
Agarwal, R. & Prasad, J. (1999). Are individual differences germane to the acceptance of new information technologies? Decision Sciences, 30(2), 361-391 . https://doi.org/10.1111/j.1540-5915.1999.tb01614.x
Ajzen, I., Nichols, A. J., & Driver, B. L. (1995). Identifying salient beliefs about leisure activities: Frequency of elicitation versus response latency 1. Journal of Applied Social Psychology, 25(16), 1391-1410. https://doi.org/10.1111/j.1559-1816.1995.tb02623.x
Allen, I. E. & Seaman, J. (2016). Online report card: Tracking online education in the United States. Babson Survey Research Group.
Al-Rabiaah, A., Temsah, M. H., Al-Eyadhy, A. A., Hasan, G. M., Al-Zamil, F., Al-Subaie, S., ... & Somily, A. M. (2020). Middle east respiratory syndrome-corona virus (MERS-CoV) associated stress among medical students at a university teaching hospital in Saudi Arabia. Journal of Infection and Public Health, 13(5), 687-691. https://doi.org/10.1016/j.jiph.2020.01.005
Askari, R. (may, 8, 2020). The impact of Covid-19 on higher education in Bangladesh. Dhaka courier. https://dhakacourier.com.bd/news/Column/the-impact-of-covid-19-on-higher-education-in-bangladesh/2397.html
Balkin, R. S., Buckner, D., Swartz, J., & Rao, S. (2005). Issues in classroom management in an interactive distance education course. International Journal of Instructional Media, 32(4), 363-372.
Baron, R. M. & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182. https://doi.org/10.1037/0022-3514.51.6.1173
Bedford, J., Enria, D., Giesecke, J., Heymann, D. L., Ihekweazu, C., Kobinger, G., ... & Ungchusak, K. (2020). Covid-19: Towards controlling of a pandemic. The Lancet, 395(10229), 1015-1018. https://doi.org/10.1016/S0140-6736(20)30673-5
Bickel, R. (2012). Multilevel analysis for applied research: It's just regression! Guilford Press.
Bower, M., Dalgarno, B., Kennedy, G. E., Lee, M. J., & Kenney, J. (2015). Design and implementation factors in blended synchronous learning environments: Outcomes from a cross-case analysis. Computers & Education, 86, 1-17. https://doi.org/10.1016/j.compedu.2015.03.006
Bozkurt, A. & Sharma, R. C. (2020). Emergency remote teaching in a time of global crisis due to CoronaVirus pandemic. Asian Journal of Distance Education, 15(1), 1-6.
Brooks, C. & Grajek, S. L. (april, 9, 2020). Institutional readiness to adopt fully remote learning. EDUCAUSE. https://er.educause.edu/blogs/2020/4/institutional-readiness-to-adopt-fully-remote-learning.
Bussmann, S., Johnson, S. R., Oliver, R., Forsythe, K., Grandjean, M., Lebsock, M., & Luster, T. (2017). On the recognition of quality online course design in promotion and tenure: A survey of higher ed institutions in the western United States. Online Journal of Distance Learning Administration, 20(1), art 1.
Callaghan, W., Wilson, B., Ringle, C. M., & Henseler, J. (2007). Exploring causal path directionality for a marketing model using cohen’s path method. MATFORSK.
Carrión, G. C., Nitzl, C., & Roldán, J. L. (2017). Mediation analyses in partial least squares structural equation modeling: Guidelines and empirical examples. In H. Latan and R. D. Noonan (Eds.), Partial least squares path modeling (pp. 173-195). Springer. https://doi.org/10.1007/978-3-319-64069-3_8
Celik, V. & Yesilyurt, E. (2013). Attitudes to technology, perceived computer self-efficacy and computer anxiety as predictors of computer supported education. Computers & Education, 60(1), 148-158. https://doi.org/10.1016/j.compedu.2012.06.008
Chang, I. & Chen, R. (2020). The impact of perceived usefulness on satisfaction with online parenting resources: The mediating effects of liking and online interaction. Asia-Pacific Education Researcher, 29, 307-317. https://doi.org/10.1007/s40299-019-00484-y.
Child, D. (2006). The essentials of factor analysis. A&C Black.
Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.
Chin, W. W. (1998a). Commentary: Issues and opinion on structural equation modeling. MIS Quarterly, 22(1), 7-16. 259.
Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189-217. https://doi.org/10.1287/isre.14.2.189.16018.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, Inc.
Compeau, D. R. & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 5(1), 189-211. https://doi.org/10.2307/249688
Coopasami, M., Knight, S., & Pete M. (2017). E-Learning readiness amongst nursing students at the Durban University of Technology. Health Sa Gesondheid, 22(1), 300-306. https://doi.org/10.1016/j.hsag.2017.04.003
Cox, D. R. & Hinkley, D. V. (1979). Theoretical statistics. CRC Press. https://doi.org/10.1201/b14832
Cutri, R. M. & Mena, J. (2020). A critical reconceptualization of faculty readiness for online teaching. Distance Education, 41(3), 361-380. https://doi.org/10.1080/01587919.2020.1763167
Cutri, R. M. & Whiting, E. F. (2018). Opening spaces for teacher educator knowledge in a faculty development program on blended learning course development. Studying Teacher Education, 14(2), 125-140. https://doi.org/10.1080/17425964.2018.1447920
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 3(2), 319-340. https://doi.org/10.2307/249008
Deci, E. L. & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Springer. https://doi.org/10.1007/978-1-4899-2271-7
Denis, B., Watland, P., Pirotte, S., & Verday, N. (2004). Roles and competencies of the e-tutor. In AAVV (Coord.), Proceedings of the fourth international conference (pp. 150-157). Networked learning.
Eble, K. (1994). Craft of teaching: A guide to mastering the professor's art. Jossey-Bass.
Falk, R. F. & Miller, N. B. (1992). A primer for soft modeling. University of Akron Press.
Field, A. (2009). Discovering statistics using SPSS. Sage publications.
Fishbein, M., Jaccard, J., Davidson, A. R., Ajzen, I., & Loken, B. (1980). Predicting and understanding family planning behaviors. Prentice Hall.
Flores, M. & Gago, M. (2020). Teacher education in times of Covid-19 pandemic in Portugal: National, institutional and pedagogical responses. Journal of Education for Teaching, 46(4), 1-10. https://doi.org/10.1080/02607476.2020.1799709
Fornell, C. & Cha, J. (1994). Partial least squares. Advanced Methods of Marketing Research, 407, 52-78. https://doi.org/10.1002/0471667196.ess1914.pub2
Fornell, C. & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382-388. https://doi.org/10.1177/002224378101800313
Frydenberg, J. (2007). Persistence in university continuing education online classes. The International Review of Research in Open and Distributed Learning, 8(3), 375-389. https://doi.org/10.19173/irrodl.v8i3.375.
Garrison, D. R. (2011). E-learning in the 21st century: A framework for research and practice. Taylor & Francis. https://doi.org/10.4324/9780203838761
Garrison, D. R., Anderson, T., & Archer, W. (2003). A theory of critical inquiry in online distance education. Handbook of Distance Education, 1, 113-127.
Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107. https://doi.org/10.1093/biomet/61.1.101.
Godoe, P. & Johansen, T. (2012). Understanding adoption of new technologies: Technology readiness and technology acceptance as an integrated concept. Journal of European Psychology Students, 3(1), art 2. https://doi.org/10.5334/jeps.aq
Gülbahar, Y. & Adnan, M. (2020). Faculty professional development in creating significant teaching and learning experiences online. In M. Adan (Ed.), Handbook of research on creating meaningful experiences in online courses (pp. 37-58). IGI Global. https://doi.org/10.4018/978-1-7998-0115-3.ch004
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed, a silver bullet. The Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202. https://doi.org/10.15358/9783800653614
Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2016). A primer on partial least squares structural equation modeling. Sage. https://doi.org/10.15358/9783800653614
Hair J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: Updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107-123. https://doi.org/10.1504/IJMDA.2017.087624
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (1998). Multivariate data analysis. Prentice.
Hardy, J. V. (1998). Teacher attitudes toward and knowledge of computer technology. Computers in the Schools, 14(4), 119-136. https://doi.org/10.1300/J025v14n03_11
Hashim, H. & Tasir, Z. (2014). E-learning readiness: A literature review. International Conference on Teaching and Learning in Computing and Engineering, 7, 267-271. https://doi.org/10.1109/LaTiCE.2014.58
Henseler, J. & Fassott, G. (2010). Testing moderating effects in PLS path models: An illustration of available procedures. In J. Henseler (Ed.), Handbook of partial least squares (pp. 713-735). Springer. https://doi.org/10.1007/978-3-540-32827-8_31
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Academy of Marketing Science Journal, 43(1), 115-129. https://doi.org/10.1007/s11747-014-0403-8
Henseler, J., Ringle, C., & Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277-320. https://doi.org/10.1108/S1474-7979(2009)0000020014.
Islam, M. Z. (April, 14, 2020). Mobile internet slowest in Bangladesh among 42 countries. The Daily Stars. https://www.thedailystar.net/business/news/mobile-internet-slowest-bangladesh-among-42-countries-1892761
Islam, M. K., Islam, Y. M., Hossain, M. E., & Hoque, M. S. (2016). Articulation of group dynamics of undergraduate students in social media. http://oasis.col.org/handle/11599/2508.
Järvelä, S., Volet, S., & Järvenoja, H. (2010). Research on motivation in collaborative learning: Moving beyond the cognitive-situative divide and combining individual and social processes. Educational Psychologist, 45(1), 15-27. https://doi.org/10.1080/00461520903433539
Joo, Y. J., Lim, K. Y., & Kim, N. H. (2016). The effects of secondary teachers’ technostress on the intention to use technology in South Korea. Computers & Education, 95, 114-122. https://doi.org/10.1016/j.compedu.2015.12.004
Kafka, A. C. (2020). Shock, fear, and fatalism: As coronavirus prompts colleges to close, students grapple with uncertainty. The Cronicle of Higher Education.
Khalifeh, G., Noroozi, O., Farrokhnia, M., & Talaee, E. (2020). Higher education students’ perceived readiness for computer-supported collaborative learning. Multimodal Technologies and Interaction, 4(2), 11. https://doi.org/10.3390/mti4020011
Khan, M., Hossain, S., Hasan, M., & Clement, C. K. (2012). Barriers to the introduction of ICT into education in developing countries: The example of Bangladesh. Online Submission, 5(2), 61-80.
Khan, S. & Hancioglu, A. (2019). Multiple indicator cluster surveys: Delivering robust data on children and women across the globe. Studies in Family Planning, 50(3), 279-286. https://doi.org/10.1111/sifp.12103
König, J., Jäger-Biela, D. J., & Glutsch, N. (2020). Adapting to online teaching during Covid-19 school closure: Teacher education and teacher competence effects among early career teachers in Germany. European Journal of Teacher Education, 43(4) 1-15. https://doi.org/10.1080/02619768.2020.1809650
Krejcie, R. V. & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607-610. https://doi.org/10.1177/001316447003000308
Kyei-Blankson, L., Ntuli, E., & Blankson, J. (Eds.). (2019). Handbook of research on creating meaningful experiences in online courses. IGI Global. https://doi.org/10.4018/978-1-7998-0115-3
Li, K., Li, Y., & Franklin, T. (2016). Preservice teachers’ intention to adopt technology in their future classrooms. Journal of Educational Computing Research, 54(7), 946-966. https://doi.org/10.1177/0735633116641694
Li, Q. & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review, 22(3), 215-243. https://doi.org/10.1007/s10648-010-9125-8
Li, W., Lee, A. M., & Solmon, M. A. (2005). Relationships among dispositional ability conceptions, intrinsic motivation, perceived competence, experience, and performance. Journal of Teaching in Physical Education, 24(1), 51-65. https://doi.org/10.1123/jtpe.24.1.51
Liouville, J. & Bayad, M. (1998). Human resource management and performances: Proposition and test of a causal model. Human Systems Management, 17(3), 183-192. https://doi.org/10.1177/239700229801200304
Liu, X., Liu, S., Lee, S., & Magjuka, R. J. (2010). Cultural differences in online learning: International student perceptions. Educational Technology and Society, 13(3), 177-188.
Martin, F., Wang, C., Jokiaho, A., May, B., & Grübmeyer, S. (2019). Examining faculty readiness to teach online: A comparison of US and German educators. European Journal of Open, Distance and E-Learning, 22(1), 53-69. https://doi.org/10.2478/eurodl-2019-0004.
McIntyre, M. (2020). How coronavirus is affecting the mental health of millions of Americans. https://www.psycom.net/coronavirus-mental-health.html
Mitra, A., Hazen, M. D., LaFrance, B., & Rogan, R. G. (1999). Faculty use and non-use of electronic mail: Attitudes, expectations and profiles. Journal of Computer-Mediated Communication, 4(3), 297-318. https://doi.org/10.1111/j.1083-6101.1999.tb00097.x
Mtebe, J. & Raisamo, R. (2014). Investigating students’ behavioural intention to adopt and use mobile learning in higher education in East Africa. International Journal of Education and Development Using ICT, 10(3), 148476.
Nami, F. & Vaezi, S. (2018). How ready are our students for technology-enhanced learning? Students at a university of technology respond. Journal of Computing in Higher Education, 30(3), 510-529. https://doi.org/10.1007/s12528-018-9181-5
Noroozi, O. & Hatami, J. (2019). The effects of online peer feedback and epistemic beliefs on students’ argumentation-based learning. Innovations in Education and Teaching International, 56(5), 548-557. https://doi.org/10.1080/14703297.2018.1431143
Notari, M., Baumgartner, A., & Herzog, W. (2014). Social skills as predictors of communication, performance and quality of collaboration in project?based learning. Journal of Computer Assisted Learning, 30(2), 132-147. https://doi.org/10.1111/jcal.12026
Nunnally, J. C. & Bernstein, I. H. (1994). Psychometric theory. McGraw-Hill
Osborne, J. W., Costello, A. B., & Kellow, J. T. (2008). Exploratory factor analysis (EFA) is rightly described as both an art and a science. Best Practices in Quantitative Methods, 86, e6243. https://doi.org/10.4135/9781412995627
Osman, M. E. (2005). Students’ reaction to WebCT: Implications for designing online learning environments. International Journal of Instructional Media, 32(4), 353-362.
Parasuraman, A. & Colby, C. L. (2007). Techno-ready marketing: How and why your customers adopt technology. The Free Press.
Phielix, C., Prins, F. J., & Kirschner, P. A. (2010). Awareness of group performance in a CSCL-environment: Effects of peer feedback and reflection. Computers in Human Behavior, 26(2), 151-161. https://doi.org/10.1016/j.chb.2009.10.011
Preacher, K. J. & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717-731. https://doi.org/10.3758/BF03206553
Raffo, D. M., Fisher, L. S., & Raffo, D. M. (2015). Balancing online teaching activities: Strategies for optimizing efficiency and effectiveness. The Free Press.
Rennie, F. & Morrison, T. (2013). E-learning and social networking handbook: Resources for higher education. Routledge. https://doi.org/10.4324/9780203120279
Renninger, K. A., Cai, M., Lewis, M. C., Adams, M. M., & Ernst, K. L. (2011). Motivation and learning in an online, unmoderated, mathematics workshop for teachers. Educational Technology Research and Development, 59(2), 229-247. https://doi.org/10.1007/s11423-011-9195-4
Ryan, R. M. & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67. https://doi.org/10.1006/ceps.1999.1020
Ryan, R. M., Connell, J. P., & Grolnick, W. S. (1992). When achievement is not intrinsically motivated: A theory of internalization and self-regulation in school. Achievement and Motivation: A Social-Developmental Perspective, 167(88), 167-188.
Sahu, P. (2020). Closure of universities due to Coronavirus Disease 2019 (COVID-19): impact on education and mental health of students and academic staff. Cureus, 12(4), e7541. https://doi.org/10.7759/cureus.7541
Sarker, M., Mahmud, R., Islam, M. S., & Islam, M. K. (2019). Use of e-learning at higher educational institutions in Bangladesh: Opportunities and challenges. Journal of Applied Research in Higher Education, 11(2), 210-223. https://doi.org/10.1108/JARHE-06-2018-0099.
Shenoy, M. V, Mahendra.M. S. & Vijay, M. N. (2020). Covid-19. Lockdown: Technology adaption, teaching, learning, student’s engagement and faculty experience. Mukt Shabd Journal, 9(4), 698-702.
Slof, B., Nijdam, D., & Janssen, J. (2016). Do interpersonal skills and interpersonal perceptions predict student learning in CSCL-environments? Computers & Education, 97, 49-60. https://doi.org/10.1016/j.compedu.2016.02.012
Smith, P. J. (2005). Learning preferences and readiness for online learning. Educational Psychology, 25(1), 3-12. https://doi.org/10.1080/0144341042000294868
Stansfield, M., McLellan, E., & Connolly, T. M. (2004). Enhancing student performance in online learning and traditional face-to-face class delivery. Journal of Information Technology Education, 3, 173-188. https://doi.org/10.28945/296
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36(2), 111-147. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
Sureshchandar, G. S., Rajendran, C., & Anantharaman, R. N. (2002). The relationship between service quality and customer satisfaction–a factor specific approach. Journal of Services Marketing, 16(4), 363-379. https://doi.org/10.1108/08876040210433248
Swanson, E. B. (1988). Management information system: Appreciation and involvement. Management Science, 21(2), 178-188. https://doi.org/10.1287/mnsc.21.2.178
Tacq, J. J. & Tacq, J. (1997). Multivariate analysis techniques in social science research: From problem to analysis. Sage.
Teo, T. (2010). A path analysis of pre-service teachers' attitudes to computer use: Applying and extending the technology acceptance model in an educational context. Interactive Learning Environments, 18(1), 65-79. https://doi.org/10.1080/10494820802231327
Teo, T., Lee, C. B., & Chai, C. S. (2008). Understanding pre?service teachers' computer attitudes: Applying and extending the technology acceptance model. Journal of Computer Assisted Learning, 24(2), 128-143. https://doi.org/10.1111/j.1365-2729.2007.00247.x
Toquero, C. M. (2020). Challenges and opportunities for higher education amid the covid-19 pandemic: The Philippine context. Pedagogical Research, 5(4), em0063. https://doi.org/10.29333/pr/7947
Uddin, M. (june, 13, 2020). Effects of the pandemic on the education sector in Bangladesh. The Financial Express. https://thefinancialexpress.com.bd/views/effects-of-the-pandemic-on-the-education-sector-in-bangladesh-1592061447
Ünal, Y., Al?r, G., & Soydal, I. (2014). Students readiness for e-learning: An assessment on hacettepe university department of information management. Communications in Computer and Information Science, 137-147. https://doi.org/10.1007/978-3-662-44412-2_13.
UNESCO. (2020). Covid-19 educational disruption and response. UNESCO.
UNESCO. (2020). Dealing with obstacles to distance learning. UNESCO.
Venkatesh, V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS path modeling: From foundations to recent developments and open issues for model assessment and improvement. In V. E. Vinzi, W. W. Chin, J. R. Henseler (Eds.), Handbook of partial least squares (pp. 47-82). Springer. https://doi.org/10.1007/978-3-540-32827-8_3
Wang, Y. S., Wu, M. C., & Wang, H. Y. (2009). Investigating the determinants and age and gender differences in the acceptance of mobile learning. British Journal of Educational Technology, 40(1), 92-118. https://doi.org/10.1111/j.1467-8535.2007.00809.x
Wilson, J. (2010). Essentials of business research: A guide to doing your research project. Sage.
Xiong, Y., So, H. J., & Toh, Y. (2015). Assessing learners’ perceived readiness for computer-supported collaborative learning (CSCL): A study on initial development and validation. Journal of Computing in Higher Education, 27(3), 215-239. https://doi.org/10.1007/s12528-015-9102-9
Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25(1), 82-91. https://doi.org/10.1006/ceps.1999.1016