Vol. 12 No. 3 (2014)
Articles

Effects on High School Students of the Use of Symbols that Show the Difficulty Level of a Problem

Published January 1, 2016

Keywords:

Quality, Effectiveness, Change, Improvement, Equity, Innovation.
How to Cite
Mugarra Soldevila, I., Solaz-Portolés, J. J., & Caurín Alonso, C. (2016). Effects on High School Students of the Use of Symbols that Show the Difficulty Level of a Problem. REICE. Ibero-American Journal on Quality, Effectiveness and Change in Education, 12(3). https://doi.org/10.15366/reice2014.12.3.006

Abstract

In this paper we analyse the effect on the problem solving of the use of symbols that show the difficulty level of the problem (next to problem statement). Likewise, we study how students’ academic level is involved in this effect. Sixty-seven High School students (10th or 12th grade students) have solved two problems, with two different difficulty levels, that have symbols that show the difficulty level (real or false). Moreover, four students have been interviewed to get information on their characteristics and the influence of the symbols. Results indicate that: a) the symbols have an influence on problem solving success, b) students’ academic level does not change the effect of the symbols, and c) the symbols affect students with low self-efficacy and poor problem-solving strategies more than other students. 

Downloads

Download data is not yet available.

References

Anderson, N.J. (2005). L2 learning strategies. En E. Hinkel (Ed.), Handbook of research in second language teaching and learning (pp. 757–771). Mahwah, NJ: Lawrence Erlbaum.

Chamot, A.U. (2005). Language learning strategy instruction: Current issues and research. Annual Review of Applied Linguistics, 25, 112-130.

Coutinho, S.A., Wiemer-Hastings, K., Skowronski, J.J. y Britt, M.A. (2005). Metacognition, need for cognition and use of explanations during ongoing learning and problem solving. Learning and Individual Differences, 15, 321-337.

Garofalo, J. y Lester, F. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal of Research in Mathematics Education, 16(3), 163-176.

Gómez, C.B., Sanjosé, V. y Solaz-Portolés, J.J. (2012). Una revisión de los procesos de transferencia para el aprendizaje y enseñanza de las ciencias. Didáctica de las Ciencias Experimentales y Sociales, 26, 199-227.

Greeno, J. (1991). A view of mathematical problem solving in school. En M.U. Smith (Ed.), Toward a unified theory of problem solving (pp. 69-98). Hillsdale, NJ: Lawrence Erlbaum Associates.

Jonassen, D. (2000). Toward a design theory of problem-solving. Educational Technology: Research and Development, 48, 63 - 85.

Kuhn, D. y Dean, D. (2004). A bridge between cognitive psychology and educational practice. Theory into Practice, 43(4), 268-273.

Marcou, A. y Philippou, G. (2005) Motivational beliefs, self-regulated learning and mathematical problem solving. En H.L. Chick y J.L. Vincent (Eds.), Proceedings of the 29 Conference of the International Group for the Psychology of Mathematics Education (pp. 297-304). Melbourne: PME

Mayer, R.E. (1992). Thinking, problem solving and cognition. Nueva York: Freeman.

Mayer, R.E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional Science, 26, 49 – 63

O’Malley, J.M. y Chamot, A.U. (1990). Language Strategies in Second Language Acquisition. Cambridge: Cambridge University Press.

Orrantia, J., Múñez, D., Fernández, M. y Matilla, L. (2012). Resolución de problemas aritméticos: Conocimiento conceptual y nivel de competencia en matemáticas. Aula Abierta, 40(3), 23-32.

Schneider, W. (2008). The development of metacognitive knowledge in children and adolescents: Major trends and implications for education. Mind, Brain, and Education, 2(3), 114-121.

Schoenfeld, A.H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. En D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). Nueva York: McMillan.

Schraw, G. y Moshman, D. (1995). Metacognitive theories. Educational Psychology Review, 7(4), 351-371.

Solaz-Portolés, J.J. y Sanjosé, V. (2007). Representations in problem solving in science: Directions for practice. Asia Pacific Forum on Science Learning and Teaching, 8(2), art. 8.

Solaz-Portolés, J.J. y Sanjosé, V (2008). Conocimientos y procesos cognitivos en la resolución de problemas de ciencias: consecuencias para la enseñanza. Magis, Revista Internacional de Investigación en Educación, 1, 147-162.

Solaz-Portolés, J.J., Sanjosé, V. y Gangoso, Z. (2013). La investigación en resolución de problemas instruccionales. Efectos de variables del problema y de las variables cognitivas, metacognitivas y motivacionales del resolutor. En J. Benegas, M.C. Pérez de Landazábal y J. Otero (Eds.), El aprendizaje activo de la Física Básica Universitaria (pp. 95-118). Santiago de Compostela: Andavira Editora.

Verschaffel, L., Greer, B. y De Corte, E. (2000). Making sense of word problems. Lisse: Swets & Zeitlinger Publishers.

Vicente, S. y Orrantia, J. (2007). Resolución de problemas y comprensión situacional. Cultura y Educación, 19, 61-85.

Wenden, A.L. (1991). Learner strategies for learner autonomy. Englewood Cliffs, NJ: Prentice-Hall.