No. 49 (2021): Human beings and technology
Articles

Modification of the genetic code

Lluís Montoliu
Centro Nacional de Biotecnología (CNB-CSIC). Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER-ISCIII)
Plaza Mayor de la UAM
Published December 21, 2021

Keywords:

Genetic modification, Recombinant DNA, Transgenesis, Gene editing, CRISPR-Cas
How to Cite
Montoliu, L. (2021). Modification of the genetic code. Tarbiya, Revista De Investigación E Innovación Educativa, (49). https://doi.org/10.15366/tarbiya2021.49.004

Abstract

The modification of the human genome at will is an idea that has been around researchers since the 70s of the last century. After the appearance of the first genetic engineering techniques and the successive methods of transgenesis that were developed later, the desire or fear of being able to modify human DNA was always present. However, this could not be verified until 2013, with the appearance of the CRISPR-Cas gene editing tools, which facilitated and universalized the procedures of targeted genetic alteration, on specific genes.

Downloads

Download data is not yet available.

References

ANGRIST, M., BARRANGOU, R., BAYLIS, F., BROKOWSKI, C., BURGIO, G., CAPLAN, A., CHAPMAN, C.R., CHURCH, G.M., COOK-DEEGAN, R., CWIK, B., DOUDNA, J.A., EVANS, J.H., GREELY, H.T., HERCHER, L., HURLBUT, J.B., HYNES, R.O., ISHII, T., KIANI, S., LEE, L.H., ... DAVIES, K. (2020). Reactions to the National Academies/Royal Society Report on Heritable Human Genome Editing. The CRISPR Journal, 3(5), 332–349. https://doi.org/10.1089/crispr.2020.29106.man

ANZALONE, A.V., KOBLAN, L.W. Y LIU, D.R. (2020). Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 38(7), 824–844. https://doi.org/10.1038/s41587-020-0561-9

BAYLIS, F. (2020) To publish or not to publish. Nat Biotechno, 38(3), 271. https://doi.org/10.1038/s41587-020-0435-1

BERG, P. (2008). Asilomar 1975: DNA modification secured. Nature, 455, 290–291. https://doi.org/10.1038/455290a

CHAN, A.W.S., CHONG, K.Y., MARTINOVICH, C., SIMERLY, C. Y SCHATTEN, G. (2001). Transgenic monkeys produced by retroviral gene transfer into mature oocytes. Science, 291(5502), 309–312. https://doi.org/10.1126/science.291.5502.309

CONG, L., RAN, F.A., COX, D., LIN, S., BARRETTO, R., HABIB, N., HSU, P.D., WU, X., JIANG, W., MARRAFFINI, L.A. Y ZHANG, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823. https://doi.org/10.1126/science.1231143

DIÉGUEZ, A. (2017). Transhumanismo. La búsqueda tecnológica del mejoramiento humano. Herder Editorial.

DOETSCHMAN, T., GREGG, R.G., MAEDA, N., HOOPER, M.L., MELTON, D.W., THOMPSON, S. Y SMITHIES, O. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 330(6148), 576–578. https://doi.org/10.1038/330576a0

DOUDNA, J.A. (2020). The promise and challenge of therapeutic genome editing. Nature, 578(7794), 229–236. https://doi.org/10.1038/s41586-020-1978-5

EVANS, M.J. Y KAUFMAN, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156. https://doi.org/10.1038/292154a0

FINN, J.D., SMITH, A.R., PATEL, M.C., SHAW, L., YOUNISS, M.R., VAN HETEREN, J., DIRSTINE, T., CIULLO, C., LESCARBEAU, R., SEITZER, J., SHAH, R.R., SHAH, A., LING, D., GROWE, J., PINK, M., ROHDE, E., WOOD, K.M., SALOMON, W.E., HARRINGTON, W.F., … MORRISSEY, D.V. (2018). A Single Administration of CRISPR/Cas9 Lipid Nanoparticles Achieves Robust and Persistent In Vivo Genome Editing. Cell Rep., 22(9), 2227–2235. https://doi.org/10.1016/j.celrep.2018.02.014

FOGARTY, N.M.E., MCCARTHY, A., SNIJDERS, K.E., POWELL, B.E., KUBIKOVA, N., BLAKELEY, P., LEA, R., ELDER, K., WAMAITHA, S.E., KIM, D., MACIULYTE, V., KLEINJUNG, J., KIM, J., WELLS, D., VALLIER, L., BERTERO, A., TURNER, J.M.A., Y NIAKAN, K.K. (2017). Genome editing reveals a role for OCT4 in human embryogenesis. Nature, 550(7674), 67–73. https://doi.org/10.1038/nature24033

FRANGOUL, H., ALTSHULER, D., CAPPELLINI, D., CHEN, Y., DOMM, J., EUSTACE, B.K., FOELL, J., DE LA FUENTE, J., GRUPP, S., HANDGRETINGER, R., HO, T.W., KATTAMIS, A., KERNYTSKY, A., LEKSTROM-HIMES, J., LI, A.M., LOCATELLI, F., MAPARA, M.Y., DE MONTALEMBERT, M., RONDELLI, D., ... CORBACIOGLU, S. (2021). CRISPR-Cas9 Gene Editing for Sickle Cell Disease and ?-Thalassemia. The New England Journal of Medicine, 384(3), 252–260. https://doi.org/10.1056/NEJMoa2031054

GILLMORE, J.D., GANE, E., TAUBEL, J., KAO, J., FONTANA, M., MAITLAND, M.L., SEITZER, J., O’CONNELL, D., WALSH, K.R., WOOD, K., PHILLIPS, J., XU, Y., AMARAL, A., BOYD, A.P., CEHELSKY, J.E., MCKEE, M.D., SCHIERMEIER, A., HARARI, O. MURPHY, A., ... LEBWOHL, D. (2021). CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. The New England Journal of Medicine, 385(6), 493–502. https://doi.org/10.1056/NEJMoa2107454

GORDON, J.W. Y RUDDLE, F.H. (1982). Germ line transmission in transgenic mice. Progress in Clinical and Biological Research, 85(Pt B), 111–124.

GORDON, J.W., SCANGOS, G.A., PLOTKIN, D.J., BARBOSA, J.A. Y RUDDLE, F.H. (1980). Genetic transformation of mouse embryos by microinjection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America, 77(12), 7380–7384. https://doi.org/10.1073/pnas.77.12.7380

JAENISCH, R. (1976). Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proceedings of the National Academy of Sciences of the United States of America, 73(4), 1260–1264. https://doi.org/10.1073/pnas.73.4.1260

JAENISCH, R., FAN, H. Y CROKER, B. (1975). Infection of preimplantation mouse embryos and of newborn mice with leukemia virus: tissue distribution of viral DNA and RNA and leukemogenesis in the adult animal. Proceedings of the National Academy of Sciences of the United States of America, 72(10), 4008–4012. https://doi.org/10.1073/pnas.72.10.4008

JAENISCH, R. Y MINTZ, B. (1974). Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proceedings of the National Academy of Sciences of the United States of America, 71(4), 1250–1254. https://doi.org/10.1073/pnas.71.4.1250

JINEK, M., CHYLINSKI, K., FONFARA, I., HAUER, M., DOUDNA, J.A. Y CHARPENTIER, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829

KOBLAN, L.W., ERDOS, M.R., WILSON, C., CABRAL, W.A., LEVY, J.M., XIONG, Z.M., TAVAREZ, U.L., DAVISON, L.M., GETE, Y.G., MAO, X., NEWBY, G.A., DOHERTY, S.P., NARISU, N., SHENG, Q., KRILOW, C., LIN, C.Y., GORDON, L.B., CAO, K., COLLINS, F.S., ... LIU, D.R. (2021). In vivo base editing rescues Hutchinson-Gilford progeria syndrome in mice. Nature, 589(7843), 608–614. https://doi.org/10.1038/s41586-020-03086-7

KOSICKI, M., TOMBERG, K. Y BRADLEY, A. (2018). Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nature Biotechnology, 36(8), 765–771. https://doi.org/10.1038/nbt.4192

LEDFORD, H. (2020). CRISPR gene editing in human embryos wreaks chromosomal mayhem. Nature, 583(7814), 17–18. https://doi.org/10.1038/d41586-020-01906-4

LIANG, P., XU, Y., ZHANG, X., DING, C., HUANG, R., ZHANG, Z., LV, J., XIE, X., CHEN, Y., LI, Y., SUN, Y., BAI, Y., SONGYANG, Z., MA, W., ZHOU, C. Y HUANG, J. (2015). CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell, 6(5), 363–372. https://doi.org/10.1007/s13238-015-0153-5

LIU, N., HARGREAVES, V.V., ZHU, Q., KURLAND, J.V., HONG, J., KIM, W., SHER, F., MACIAS-TREVINO, C., ROGERS, J.M., KURITA, R., NAKAMURA, Y., YUAN, G.C., BAUER, D.E., XU, J., BULYK, M.L. Y ORKIN, S.H. (2018). Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell, 173(2), 430–442. https://doi.org/10.1016/j.cell.2018.03.016

LIU, Z., CAI, Y., WANG, Y., NIE, Y., ZHANG, C., XU, Y., ZHANG, X., LU, Y., WANG, Z., POO, M. Y SUN, Q. (2018). Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer. Cell, 174(1), 245. https://doi.org/10.1016/j.cell.2018.01.036

MA, H., MARTI-GUTIERREZ, N., PARK, S.W., WU, J., LEE, Y., SUZUKI, K., KOSKI, A., JI, D., HAYAMA, T., AHMED, R., DARBY, H., VAN DYKEN, C., LI, Y., KANG, E., PARK, A.R., KIM, D., KIM, S.T., GONG, J., GU, Y., ... MITALIPOV, S. (2017). Correction of a pathogenic gene mutation in human embryos. Nature, 548(7668), 413–419. https://doi.org/10.1038/nature23305

MAEDER, M.L., STEFANIDAKIS, M., WILSON, C.J., BARAL, R., BARRERA, L.A., BOUNOUTAS, G.S., BUMCROT, D., CHAO, H., CIULLA, D.M., DASILVA, J.A., DASS, A., DHANAPAL, V., FENNELL, T.J., FRIEDLAND, A.E., GIANNOUKOS, G., GLOSKOWSKI, S.W., GLUCKSMANN, A., GOTTA, G.M., JAYARAM, H., ... JIANG, H. (2019). Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nature Medicine, 25(2), 229–233. https://doi.org/10.1038/s41591-018-0327-9

MALI, P., YANG, L., ESVELT, K.M., AACH, J., GUELL, M., DICARLO, J.E., NORVILLE, J.E. Y CHURCH, G.M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826. https://doi.org/10.1126/science.1232033

MOJICA, F.J.M. Y MONTOLIU, L. (2016). On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals. Trends in Microbiology, 24(10), 811–820. https://doi.org/10.1016/j.tim.2016.06.005

MOJICA, F.J.M., DÍEZ-VILLASEÑOR, C., GARCÍA-MARTÍNEZ, J. Y SORIA, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60(2), 174–182. https://doi.org/10.1007/s00239-004-0046-3

MONTOLIU, L. (7 de noviembre de 2017). La otra cara de Dolly. Blog GenÉtica, en Naukas: https://montoliu.naukas.com/2017/11/07/la-otra-cara-de-dolly/

MONTOLIU, L. (2021). Editando genes: recorta, pega y colorea. Las maravillosas herramientas CRISPR (3ª edición). NextDoor Publishers.

MUSUNURU, K., CHADWICK, A.C., MIZOGUCHI, T., GARCIA, S.P., DENIZIO, J.E., REISS, C.W., WANG, K., IYER, S., DUTTA, C., CLENDANIEL, V., AMAONYE, M., BEACH, A., BERTH, K., BISWAS, S., BRAUN, M.C., CHEN, H.M., COLACE, T.V., GANEY, J.D., GANGOPADHYAY, S.A., ... KATHIRESAN, S. (2021). In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature, 593(7859), 429–434. https://doi.org/10.1038/s41586-021-03534-y

PALMITER, R.D. Y BRINSTER, R.L. (1986). Germ-line transformation of mice. Annual Review of Genetics, 20, 465–499. https://doi.org/10.1146/annurev.ge.20.120186.002341

PALMITER, R.D., BRINSTER, R.L., HAMMER, R.E., TRUMBAUER, M.E., ROSENFELD, M.G., BIRNBERG, N.C. Y EVANS, R.M. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature, 300(5893), 611–615. https://doi.org/10.1038/300611a0

RUAN, G.X., BARRY, E., YU, D., LUKASON, M., CHENG, S.H. Y SCARIA, A. (2017). CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10. Molecular Therapy, 25(2), 331–341. https://doi.org/10.1016/j.ymthe.2016.12.006

SANKARAN, V.G., MENNE, T.F., XU, J., AKIE, T.E., LETTRE, G., VAN HANDEL, B., MIKKOLA, H.K., HIRSCHHORN, J.N., CANTOR, A.B. Y ORKIN, S.H. (2008). Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science, 322(5909), 1839–1842. https://doi.org/10.1126/science.1165409

SERUGGIA, D., Y MONTOLIU, L. (2014). The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Transgenic research, 23(5), 707–716. https://doi.org/10.1007/s11248-014-9823-y

SERUGGIA, D., FERNÁNDEZ, A., CANTERO, M., PELCZAR, P. Y MONTOLIU, L. (2015). Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Research, 43(10), 4855?4867.

https://doi.org/10.1093/nar/gkv375

STADTMAUER, E.A., FRAIETTA, J.A., DAVIS, M.M., COHEN, A.D., WEBER, K.L., LANCASTER, E., MANGAN, P.A., KULIKOVSKAYA, I., GUPTA, M., CHEN, F., TIAN, L., GONZALEZ, V.E., XU, J., JUNG, I.Y., MELENHORST, J.J., PLESA, G., SHEA, J., MATLAWSKI, T., CERVINI, A., ... JUNE, C.H. (2020). CRISPR-engineered T cells in patients with refractory cancer. Science, 367(6481), 7365. https://doi.org/10.1126/science.aba7365

TAKAHASHI, K. Y YAMANAKA, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024

THOMSON, J.A., ITSKOVITZ-ELDOR, J., SHAPIRO, S.S., WAKNITZ, M.A., SWIERGIEL, J.J., MARSHALL, V.S. Y JONES, J.M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145-1147. https://doi.org/10.1126/science.282.5391.1145

WILMUT, I., SCHNIEKE, A.E., MCWHIR, J., KIND, A.J. Y CAMPBELL, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813. https://doi.org/10.1038/385810a0