EUROPEAN TEACHERS IN THE PISA 2015 SAMPLE: A MULTILEVEL MODELLING APPROACH TO ICT INFRASTRUCTURE AND TEACHER TRAINING
Keywords:
PISA, ICT, teacher education, multilevel modellingAbstract
Drawing on the background questionnaires in PISA 2015 for teachers and schools, this paper aims to investigate the interdependencies and influences of teacher training and ICT infrastructure on their ability and willingness to employ modern media in a classroom setting. A multi-level approach is used to account for the data structure.
Our analyses show that students’ background and ICT interests provide limited predictive power concerning their test performance in the PISA 2015 sample from five European countries. Moreover, teachers and principals view shortages in staff and educational material quite differently in the background questionnaires. By these findings, new research approaches may be better suited to understand the influences teachers and school characteristics have on the learning outcomes of students in large-scale assessments. This also highlights potential problems when an analysis draws on joining different sources for a combined description.Downloads
References
Araya, R., Gormaz, R., Bahamondez, M., Aguirre, C., Calfucura, P., Jaure, P., & Laborda, C. (2015). Ict Supported Learning Rises Math Achievement in Low Socio Economic Status Schools. In G. Conole, T. Klobučar, C. Rensing, J. Konert, & É. Lavoué (Eds.), Lecture Notes in Computer Science: Vol. 9307. Design for teaching and learning in a networked world: 10th European Conference on Technology Enhanced Learning, EC-TEL 2015, Toledo, Spain, September 15-18, 2015 : proceedings (Vol. 9307, pp. 383–388). Cham, Heidelberg, New York, Dordrecht, London: Springer. https://doi.org/10.1007/978-3-319-24258-3_28
Asparouhov, T., & Muthén, B. (2008). Multilevel Mixture Models. In G. R. Hancock & K. M. Samuelsen (Eds.), CILVR series on latent variable methodology. Advances in latent variable mixture models: The theme for the inaugural conference, held at the University of Maryland on May 18 and 19, 2006, was Mixture Models in Latent Variable Research (pp. 27–52). Charlotte, NC: Information Age Pub.
Blume, B. D., Ford, J. K. [J. Kevin], Baldwin, T. T., & Huang, J. L. (2010). Transfer of Training: A Meta-Analytic Review. Journal of Management, 36(4), 1065–1105. https://doi.org/10.1177/0149206309352880
Bos, W., Eickelmann, B., Gerick, J., Goldhammer, F., Schaumburg, H., Schippert, K., . . . Wendt, H. (Eds.). (2014). ICILS 2013: Computer- und informationsbezogene Kompetenzen von Schülerinnen und Schülern in der 8. Jahrgangsstufe im internationalen Vergleich. Münster: Waxmann.
Burnham, K. P. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, 33(2), 261–304. https://doi.org/10.1177/0049124104268644
Chmielewski, A. K., & Savage, C. (2016). Socioeconomic segregation between schools in the US and Latin America, 1970–2012. In G. W. McCarthy, G. K. Ingram, & S. A. Moody (Eds.), Land and the city (pp. 394–423). Cambridge, MA: Lincoln Institute of Land Policy.
Dinis da Costa, P., & Araújo, L. (2016). Digital reading in PISA 2012 and ICT uses: How do VET and general education students perform? EUR, Scientific and technical research series: Vol. 28291. Luxembourg: Publications Office.
European Court of Auditors. (2018). Broadband in the EU Member States: Despite progress, not all the Europe 2020 targets will be met. Special report: No 12, 2018. Luxemburg: Publications Office of the European Union.
Falck, O., Mang, C., & Wößmann, L. (2018). Virtually No Effect? Different Uses of Classroom Computers and their Effect on Student Achievement. Oxford Bulletin of Economics and Statistics, 80(1), 1–38. https://doi.org/10.1111/obes.12192
Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What Makes Professional Development Effective? Results From a National Sample of Teachers. American Educational Research Journal, 38(4), 915–945. https://doi.org/10.3102/00028312038004915
Gerick, J. (2018). School level characteristics and students’ CIL in Europe – A latent class analysis approach. Computers & Education, 120, 160–171. https://doi.org/10.1016/j.compedu.2018.01.013
Goldhammer, F., Gniewosz, G., & Zylka, J. (2017). Ict Engagement in Learning Environments. In S. Kuger, N. Jude, & D. Kaplan (Eds.), Methodology of Educational Measurement and Assessment. Assessing Contexts of Learning: An International Perspective (Vol. 34, pp. 331–351). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-45357-6_13
Goldstein, H. (2003). Multilevel statistical models (3. ed.). Kendall's library of statistics: Vol. 3. London: Arnold. Retrieved from http://www.loc.gov/catdir/enhancements/fy0615/2003276198-d.html
Goldstein, I. L., & Ford, J. K. [John Kevin]. (2009). Training in organizations: Needs assessment, development, and evaluation (4. ed., [Nachdr.]). Belmont, Calif: Wadsworth/Thomson Learning.
Gómez-Fernández, N., & Mediavilla, M. (2018). Do Information And Communication Technologies (ICT) Improve Educational Outcomes?: Evidence For Spain in PISA 2015 (IEB Working Paper No. 20). https://doi.org/10.13140/RG.2.2.21085.87528
Grossman, R., & Salas, E. (2011). The transfer of training: what really matters. International Journal of Training and Development, 15(2), 103–120. https://doi.org/10.1111/j.1468-2419.2011.00373.x
Güzeller, C. O., & Akın, A. (2014). Relationship between ICT Variables and Mathematics Achievement Based on PISA 2006 Database: International Evidence. Turkish Online Journal of Educational Technology - TOJET, 13(1), 184–192. Retrieved from http://files.eric.ed.gov/fulltext/EJ1018171.pdf
Hanushek, E. A., Ruhose, J., & Wößmann, L. (2016). Knowledge Capital and Aggregate Income Differences: Development Accounting for U.S. States. American Economic Journal: Macroeconomics. https://doi.org/10.3386/w21295
Helmke, A. (2010). Unterrichtsqualität und Lehrerprofessionalität: Diagnose, Evaluation und Verbesserung des Unterrichts ; Franz Emanuel Weinert gewidmet ; [Orientierungsband] (3. Aufl.). [Unterricht verbessern - Schule entwickeln]. Stuttgart: Klett [u.a.].
Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and work environments. 3rd ed. Odessa Fla: Psychological Assessment Resources.
Hu, L.‐t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Jaensch, V. K., Hirschi, A., & Spurk, D. (2016). Relationships of Vocational Interest Congruence, Differentiation, and Elevation to Career Preparedness Among University Students. Zeitschrift für Arbeits- und Organisationspsychologie A&O, 60(2), 79–89. https://doi.org/10.1026/0932-4089/a000210
Juhaňák, L., Zounek, J., Záleská, K., Bárta, O., & Vlčková, K. (2019). The Relationship Between Students’ ICT Use and Their School Performance: Evidence from PISA 2015 in the Czech Republic. ORBIS SCHOLAE, 12(2), 37–64. https://doi.org/10.14712/23363177.2018.292
Kenny, D. A. (2014). Measuring Model Fit. Retrieved from http://davidakenny.net/cm/fit.htm
Knowles, M. S., Holton, E. F., & Swanson, R. A. (2012). The adult learner: The definitive classic in adult education and human resource development (seventh edition). London, New York: Routledge. https://doi.org/10.4324/9780080964249
Koehler, M. J., Mishra, P., Kereluik, K., Shin, T. S., & Graham, C. R. (2014). The Technological Pedagogical Content Knowledge Framework. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of Research on Educational Communications and Technology (pp. 101–111). New York, NY: Springer New York. https://doi.org/10.1007/978-1-4614-3185-5_9
Maier, A., Nitzschke, A., Nickolaus, R., Schnitzler, A., Velten, S., & Dietzen, A. (2015). Der Einfluss schulischer und betrieblicher Ausbildungsqualität auf die Entwicklung des Fachwissens. In M. Stock, P. Schlögl, K. Schmid, & D. Moser (Eds.), Innovationen in der Berufsbildung: Vol. 9. Kompetent - wofür? Life Skills - Beruflichkeit - Persönlichkeitsbildung: Beiträge zur Berufsbildungsforschung (1st ed., pp. 225–243). Innsbruck: Studien Verlag.
Muthén, B., Muthén, L., Asparouhov, T., & Nguyen, T. (2018). Mplus: Muthén & Muthén.
OECD. (2000). Learning to Bridge the Digital Divide. Education and Skills: OECD. https://doi.org/10.1787/9789264187764-en
OECD. (2016a). PISA 2015 Ergebnisse (Band I): W. Bertelsmann Verlag. https://doi.org/10.1787/19963793
OECD. (2016b). Skills Matter: Further Results From The Survey Of Adult Skills. PIAAC. Paris: OECD Publishing. https://doi.org/10.1787/9789264258051-en
OECD. (2018). Science, Technology and Innovation Outlook 2018: Adapting to Technological and Societal Disruption: OECD. https://doi.org/10.1787/sti_in_outlook-2018-en
Palfrey, J., & Gasser, U. (2008). Born digital: Understanding the first generation of digital natives. New York: Basic Books. Retrieved from http://site.ebrary.com/lib/academiccompletetitles/home.action
Prenzel, M., & Sälzer, C. (2019). Large-scale assessments of educational systems. In R. Becker (Ed.), Research handbooks in sociology. Research handbook on the sociology of education (pp. 536–552). Cheltenham: Edward Elgar. https://doi.org/10.4337/9781788110426.00041
Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2004). Generalized multilevel structural equation modeling. Psychometrika, 69(2), 167–190. https://doi.org/10.1007/BF02295939
Raftery, A. E. (1995). Bayesian Model Selection in Social Research. Sociological Methodology, 25, 111–163. https://doi.org/10.2307/271063
Rammstedt, B. (Ed.). (2013). Erwachsenenbildung 2013/14. Grundlegende Kompetenzen Erwachsener im internationalen Vergleich. Münster: Waxmann Verlag. Retrieved from http://www.content-select.com/index.php?id=bib_view&ean=9783830979999
Raudenbush, S. W., & Bryk, A. S. (2010). Hierarchical linear models: Applications and data analysis methods (2. ed., [Nachdr.]). Advanced quantitative techniques in the social sciences: Vol. 1. Thousand Oaks, Calif.: Sage Publ.
Rosén, M., & Gustafsson, J.‑E. (2016). Is computer availability at home causally related to reading achievement in grade 4? A longitudinal difference in differences approach to IEA data from 1991 to 2006. Large-scale Assessments in Education, 4(1), 130. https://doi.org/10.1186/s40536-016-0020-8
Sälzer, C., & Prenzel, M. (2014). Looking back at five rounds of PISA: Impacts on teaching and learning in Germany. Solsko Polje (The School Field). Evidence from the PISA Study on Educational Quality in Slovenia and Other Countries, XXV, 53–72.
Spokane, A. R., Meir, E. I., & Catalano, M. (2000). Person–Environment Congruence and Holland's Theory: A Review and Reconsideration. Journal of Vocational Behavior, 57(2), 137–187. https://doi.org/10.1006/jvbe.2000.1771
Steffens, K. (2014). ICT Use and Achievement in Three European Countries: What Does PISA Tell Us? European Educational Research Journal, 13(5), 553–562. https://doi.org/10.2304/eerj.2014.13.5.553
Streiner, D. L. (2002). Breaking up is hard to do: The heartbreak of dichotomizing continuous data. Canadian Journal of Psychiatry. Revue Canadienne De Psychiatrie, 47(3), 262–266. https://doi.org/10.1177/070674370204700307
Watermann, R., Maaz, K., Bayer, S., & Roczen, N. (2017). Social Background. In S. Kuger, N. Jude, & D. Kaplan (Eds.), Methodology of Educational Measurement and Assessment. Assessing Contexts of Learning: An International Perspective (Vol. 40, pp. 117–145). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-45357-6_5
Wößmann, L., & Fuchs, T. (2004). Computers and Student Learning: Bivariate and Multivariate Evidence on the Availability and Use of Computers at Home and at School. Retrieved from CESifo Working Paper Series No. 1321 website: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=619101
Wu, M. (2007). ACER ConQuest version 2.0: Generalised item response modelling software. Camberwell, Vic.: ACER Press.
Yalçın, S. (2018). Multilevel Classification of PISA 2015 Research Participant Countries' Literacy and These Classes' Relationship with Information and Communication Technologies. International Journal of Progressive Education, 14(1), 165–176. https://doi.org/10.29329/ijpe.2018.129.12
Youssef, A. B., & Dahmani, M. (2008). The Impact of ICT on Student Performance in Higher Education: Direct Effects, Indirect Effects and Organisational Change. RUSC. Universities and Knowledge Society Journal, 5(1). https://doi.org/10.7238/rusc.v5i1.321
Zhang, D., & Luman, L. (2016). How Does ICT Use Influence Students’ Achievements in Math and Science Over Time?: Evidence from PISA 2000 to 2012. EURASIA Journal of Mathematics, Science & Technology Education, 12(9), 2431–2449. https://doi.org/10.12973/eurasia.2016.1297a