Vol. 21 Núm. 81 (2021)
Área 6. FISIOLOGÍA DEL EJERCICIO / EXERCISE PHYSIOLOGY

PREDICCIÓN DEL UMBRAL ANAERÓBICO EN EL EJERCICIO PRENSA DE PIERNAS A 45°

Y.A.C. Campos
Universidad de Lavras
Biografía
J.M. Vianna
Universidad Federal de Juiz de Fora
Biografía
M.P. Guimarães
Universidad Federal de Lavras
Biografía
H.L.R. Souza
Universidad Federal de Lavras
Biografía
G.P. Silva
Universidad Federal de Lavras
Biografía
R. Domínguez
Universidad Isabel I
Biografía
S.F. Silva
Universidad de Lavras
Biografía
J.S. Novaes
Universidad Federal de Juiz de Fora
Biografía
V.M. Reis
Universidad de Trás-os-Montes y Alto Douro
Biografía
Publicado marzo 22, 2021

Palabras clave:

fisiología del ejercicio, resistencia, umbral aeróbico, umbral anaeróbico, transición aeróbica-anaeróbica
Cómo citar
Campos, Y., Vianna, J., Guimarães, M., Souza, H., Silva, G., Domínguez, R., Silva, S., Novaes, J., & Reis, V. (2021). PREDICCIÓN DEL UMBRAL ANAERÓBICO EN EL EJERCICIO PRENSA DE PIERNAS A 45°. Revista Internacional De Medicina Y Ciencias De La Actividad Física Y Del Deporte, 21(81), 83-97. https://doi.org/10.15366/rimcafd2021.81.006

Resumen

Objetivos: Identificar el umbral anaeróbico (UAnaer) a través de las concentraciones de lactato sanguíneo (UANAERDMÁX) y mediante la percepción subjetiva del esfuerzo (RPE) por la metodología Dmáx (URPEDMÁX), y evaluar la correlación entre estos métodos. Métodos: Dieciséis corredores varones participaron del estudio. Los participantes realizaron un test incremental progresivo en el ejercicio de prensa de piernas a 45° registrando las concentraciones de lactato sanguíneo y RPE. Un test T-Student se realizó para comparar la intensidad de ejercicio en la que se encontró el UANAERDMÁX y URPEDMÁX y se aplicó un test Pearson para verificar la correlación y el coeficiente de correlación intraclase (ICC). Resultados: No se encontró diferencia significativa entre los métodos UANAERDMÁX y URPEDMÁX (p<0,05). Además, se observó una correlación fuerte (r=0,73) y un ICC alto (0,822) entre ellos. Conclusiones: Para la muestra estudiada fue posible determinar el UAnaer a través de la cinética de la RPE.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Messias LHD, Polisel EEC, Manchado-Gobatto FB. Advances of the reverse lactate threshold test: Non-invasive proposal based on heart rate and effect of previous cycling experience. PloS one. 2018;13(3):1-20.

Billat V, Sirvent P, Koralszrein J, Mercier J. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sports science. Sport Med. 2003;33(6):407-26.

Maté?Muñoz JL, Domínguez R, Lougedo JH, Garnacho?Castaño MV. The lactate and ventilatory thresholds in resistance training. Clin Physiol Func Imaging. 2017;37(5):518-24.

Smith CG, Jones AM. The relationship between critical velocity, maximal lactate steady-state velocity and lactate turnpoint velocity in runners. Eur J Appl Physiol. 2001;85(1-2):19-26.

Beneke R, von Duvillard SP. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc. 1996;28(2):241-6.

Llodio I, Gorostiaga E, Garcia-Tabar I, Granados C, Sánchez-Medina L. Estimation of the maximal lactate steady state in endurance runners. Int J Sports Med. 2016;37(07):539-46.

Wahl P, Zwingmann L, Manunzio C, Wolf J, Bloch W. Higher Accuracy of the Lactate Minimum Test Compared to Established Threshold Concepts to Determine Maximal Lactate Steady State in Running. Int J Sports Med. 2018; 39(7):541-48.

Bosquet L, Léger L, Legros P. Methods to determine aerobic endurance. Sport Med. 2002;32(11):675-700.

Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6(03):117-30.

Beneke R. Methodological aspects of maximal lactate steady state implications for performance testing. Eur J Appl Physiol. 2003;89(1):95-9.

Garcia-Tabar I, Gorostiaga EM. A “Blood Relationship” between the Overlooked Minimum Lactate Equivalent and Maximal Lactate Steady State in Trained Runners. Back to the Old Days? Front Physiol. 2018;13(3):1-13.

Garnacho-Castaño MV, Domínguez R, Ruiz-Solano P, Maté-Muñoz JL. Acute physiological and mechanical responses during resistance exercise at the lactate threshold intensity. J Strength Cond Res. 2015;29(10):2867-73.

Maté-Muñoz JL, Domínguez R, Barba M, Monroy AJ, Rodríguez B, Ruiz-Solano P, et al. Cardiorespiratory and metabolic responses to loaded half squat exercise executed at an intensity corresponding to the lactate threshold. J Sports Sci Med. 2015;14(3):648.

Simões R, Castello-Simões V, Mendes R, Archiza B, Santos D, Machado H, et al. Lactate and heart rate variability threshold during resistance exercise in the young and elderly. Int J Sports Med. 2013;34(11):991-6.

Simões RP, Mendes RG, Castello V, Machado HG, Almeida LB, Baldissera V, et al. Heart-rate variability and blood-lactate threshold interaction during progressive resistance exercise in healthy older men. J Strength Cond Res. 2010;24(5):1313-20.

Moreira SR, Arsa G, Oliveira HB, Lima LC, Campbell CS, Simões HG. Methods to identify the lactate and glucose thresholds during resistance exercise for individuals with type 2 diabetes. J Strength Cond Res. 2008;22(4):1108-15.

Oliveira JC, Baldissera V, Simões HG, Aguiar AP, Azevedo PHSM, Poian PAFO, et al. Identificação do limiar de lactato e limiar glicêmico em exercícios resistidos. Rev Bras Med Esporte. 2006;12(6):333-8.

Rocha RM, Bomfim DL, Nascimento TBR, Moreira SR, Simões HG. A Variação do método de incremento de cargas não altera a determinação do limiar de lactato em exercício resistido. Rev Bras Med Esporte. 2010;16(4):282-5.

Domínguez R, Garnacho-Castaño M, San Juan A, Pérez-Ruiz M, García-Fernández P, Veiga-Herreros P, et al. Cardiorespiratory responses at the intensity of the threshold. Comparative study between half squat and cycloergometer. Rev Int Med Cienc Act Fís Deporte 2018;18(71): 507-20.

Domínguez R, Maté-Muñoz J, Serra-Paya N, Garnacho-Castaño M. Lactate Threshold as a Measure of Aerobic Metabolism in Resistance Exercise. Int J Sports Med. 2018;39(3):163-72.

Fabre N, Mourot L, Zerbini L, Pellegrini B, Bortolan L, Schena F. A novel approach for lactate threshold assessment based on rating of perceived exertion. Int J Sports Physiol Perform. 2013;8(3):263-70.

Ferreira GA, Osiecki R, Lima-Silva AE, de Angelis-Pereira MC, De-Oliveira FR. Effect of a reduced-CHO diet on the rate of perceived exertion curve during an incremental test. Int J Sport Nutr Exerc Metab. 2014;24(5):532-42.

Irving BA, Rutkowski J, Brock DW, Davis CK, Barrett EJ, Gaesser GA, et al. Comparison of Borg-and OMNI-RPE as markers of the blood lactate response to exercise. Med Sci Sports Exerc. 2006;38(7):1348-52.

Arsa G, Cambri LT, Silva Fd, Pardono E, Serra AJ, Leite GdS, et al. Anaerobic threshold from PE in resistance exercise by mathematical models. Rev Bras Med Esporte. 2016;22(2):113-7.

Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, Halle M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol. 2013;113(1):147-55.

Vianna J, Reis V, Saavedra F, Damasceno V, Silva S, Goss F. Can Energy Cost During Low-Intensity Resistance Exercise be Predicted by the OMNI-RES Scale? J Hum Kinet. 2011;29(Special Issue):75-82.

Borg G. Borg's perceived exertion and pain scales: Human kinetics; 1998.

Eston R. Use of ratings of perceived exertion in sports. Int J Sports Physiol Perform. 2012;7(2):175-82.

Cheng B, Kuipers H, Snyder A, Keizer H, Jeukendrup A, Hesselink M. A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med. 1992;13(07):518-22.

Baechle TR, Earle RW. Essentials of strength training and conditioning: Human kinetics; 2008.

Robertson RJ, Goss FL, Rutkowski J, Lenz B, Dixon C, Timmer J, et al. Concurrent validation of the OMNI perceived exertion scale for resistance exercise. Med Sci Sports Exerc. 2003;35(2):333-41.

Robertson RJ, Goss FL, Boer NF, Peoples JA, Foreman AJ, Dabayebeh IM, et al. Children's OMNI scale of perceived exertion: mixed gender and race validation. Med Sci Sports Exerc. 2000;32(2):452-8.

De Sousa N, Magosso R, Pereira G, Souza M, Vieira A, Marine D, et al. Acute cardiorespiratory and metabolic responses during resistance exercise in the lactate threshold intensity. Int J Sports Med. 2012;33(2):108-13.

De Sousa NMF, Magosso RF, Pereira GB, Leite RD, Arakelian VM, Montagnolli AN, et al. The measurement of lactate threshold in resistance exercise: a comparison of methods. Clin Physiol Funct Imaging. 2011;31(5):376-81.

Bishop D. Evaluation of the Accusport® lactate analyser. Int J Sports Med.. 2001;22(7):525-30.

Hinkle DE, Wiersma W, Jurs SG. Applied statistics for the behavioral sciences. 2003.

Bland JM, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet. 1986;327(8476):307-10.

Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update a scientific statement from the american heart association council on clinical cardiology and council on nutrition, physical activity, and metabolism. Circulation. 2007;116(5):572-84.

Kohn T, Essén?Gustavsson B, Myburgh K. Specific muscle adaptations in type II fibers after high?intensity interval training of well?trained runners. Scand J Med Sci Sports. 2011;21(6):765-72.

Messonnier LA, Emhoff C-AW, Fattor JA, Horning MA, Carlson TJ, Brooks GA. Lactate kinetics at the lactate threshold in trained and untrained men. J Appl Physiol. 2013;114(11):1593-602.

Monnier-Benoit P, Groslambert A, Rouillon J-D. Determination of the ventilatory threshold with affective valence and perceived exertion in trained cyclists: a preliminary study. J Strength Cond Res. 2009;23(6):1752-7.

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.

Robertson RJ, Falkel JE, Drash AL, Swank AM, Metz KF, Spungen SA, et al. Effect of blood pH on peripheral and central signals of perceived exertion. Med Sci Sports Exerc. 1986;18(1):114-22.

Pageaux B, Gaveau J. Studies using pharmacological blockade of muscle afferents provide new insights into the neurophysiology of perceived exertion. J Physiol. 2016;594(18):5049-51.

Peñailillo L, Mackay K, Abbiss CR. Rating of Perceived Exertion During Concentric and Eccentric Cycling: Are We Measuring Effort or Exertion? Int J Sports Physiol Perform. 2018;13(4):517-23.

Hampson DB, Gibson ASC, Lambert MI, Noakes TD. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med. 2001;31(13):935-52.

Abbiss CR, Peiffer JJ, Meeusen R, Skorski S. Role of ratings of perceived exertion during self-paced exercise: what are we actually measuring? Sports Med. 2015;45(9):1235-43.