Vol. 20 Núm. 80 (2020)
Área 6. FISIOLOGÍA DEL EJERCICIO / EXERCISE PHYSIOLOGY

EFECTOS DE LA INTENSIDAD DE NADO EN EL RENDIMIENTO DEL TRIATLON

R. Barragán
Universidad Castilla-La Mancha
Biografía
J.M. González-Ravé
Universidad Castilla-La Mancha
Biografía
F. González-Mohíno
Universidad Nebrija
Biografía
I. Yustres
Universidad Castilla-La Mancha
Biografía
D. Juárez Santos-García
Universidad Castilla-La Mancha
Biografía
Publicado diciembre 22, 2020

Palabras clave:

resistencia, rendimiento, entrenamiento
Cómo citar
Barragán, R., González-Ravé, J., González-Mohíno, F., Yustres, I., & Juárez Santos-García, D. (2020). EFECTOS DE LA INTENSIDAD DE NADO EN EL RENDIMIENTO DEL TRIATLON. Revista Internacional De Medicina Y Ciencias De La Actividad Física Y Del Deporte, 20(80), 529-538. https://doi.org/10.15366/rimcafd2020.80.004

Resumen

Objetivo: Analizar la influencia de diferentes intensidades de nado en los sectores de ciclismo y carrera a pie y en el rendimiento final del triatlón sprint. Métodos: Siete triatletas sub23 y Absolutos (altura de 1,74 ± 0,04 m, peso de 70,82 ± 6,76 kg, edad de 23,42 ± 3,25 años, VOmax de 63,54 ± 5,23 ml·kg-1·min-1) participaron en este estudio. Realizaron tres triatlones completos a intensidades de nado diferentes (70%, 80% y 90% de un test de 750m previo). Se midió la frecuencia cardíaca y el lactato al finalizar cada sector y el triatlón completo. Resultados: La intensidad de nado del 90% obtuvo el mejor rendimiento final. El lactato y frecuencia cardíaca en el sector de nado para esta condición incrementó significativamente, sin diferencias en los sectores siguientes. Conclusiones: Basándonos en la muestra estudiada, el rendimiento final en un triatlón sprint parece estar condicionado por la intensidad de nado, siendo el 90% la mejor intensidad observada en triatletas moderadamente entrenados.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Chatard JC, Senegas X, Selles M, Dreanot P, Geyssant A. Wet suit effect: a comparison between competitive swimmers and triathletes. Med Sci Sport Exer. 1995;27(4):580-586. https://doi.org/10.1249/00005768-199504000-00017

Cordain L, Kopriva R. Wetsuits, body density and swimming performance. Brit J Sport Med. 1991;25(1):31-33. https://doi.org/10.1136/bjsm.25.1.31

De Lucas RD, Balikian P, Neiva CM, Greco CC, Denadai BS. The effects of wet suits on physiological and biomechanical indices during swimming. J Sci Med Sport. 2000;3(1):1-8. https://doi.org/10.1016/S1440-2440(00)80042-0

Bassett Jr DR, Flohr J, Duey WJ, Howley ET, Pein RL. Metabolic responses to drafting during front crawl swimming. Med Sci Sport Exer. 1991;23(6):744-747. https://doi.org/10.1249/00005768-199106000-00015

Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sport Exer. 2000;32(1):70-84. https://doi.org/10.1097/00005768-200001000-00012

Chatard JC, Chollet D, Millet G. Performance and drag during drafting swimming in highly trained triathletes. Med Sci Sport Exer. 1998;30(8):1276-1280. https://doi.org/10.1097/00005768-199808000-00015

Chollet D, Hue O, Auclair F, Millet G, Chatard JC. The effects of drafting on stroking variations during swimming in elite male triathletes. Eur J Appl Physiol. 2000;82(5-6):413-417. https://doi.org/10.1007/s004210000233

Delextrat A, Tricot V, Bernard T, Vercruyssen F, Hausswirth C, Brisswalter J. Modification of cycling biomechanics during a swim-to-cycle trial. J Appl Biomech. 2005;21(3):297-308. https://doi.org/10.1123/jab.21.3.297

Millet GP, Vleck VE. Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training. Brit J Sport Med. 2000;34(5):384-390. https://doi.org/10.1136/bjsm.34.5.384

Bonacci J, Blanch P, Chapman AR, Vicenzino B. Altered movement patterns but not muscle recruitment in moderately trained triathletes during running after cycling. J Sports Sci. 2010;28(13):1477-1487. https://doi.org/10.1080/02640414.2010.514279

Bonacci J, Saunders PU, Alexander M, Blanch P, Vicenzino B. Neuromuscular control and running economy is preserved in elite international triathletes after cycling. Sport Biomech. 2011;10(01):59-71. https://doi.org/10.1080/14763141.2010.547593

Etxebarria N, Anson JM, Pyne DB, Ferguson RA. Cycling attributes that enhance running performance after the cycle section in triathlon. Int J Sports Physiol Perform. 2013;8(5):502-509. https://doi.org/10.1123/ijspp.8.5.502

Vercruyssen F, Brisswalter J, Hausswirth C, Bernard T, Bernard O, Vallier JM. Influence of cycling cadence on subsequent running performance in triathletes. Med Sci Sport Exer. 2002;34(3):530-536. https://doi.org/10.1097/00005768-200203000-00022

Landers GJ, Blanksby BA, Ackland TR, Monson R. Swim Positioning and its Influence on Triathlon Outcome. Int J Exerc Sci. 2008;1(3):96-105.

Cejuela R, Cala A, Pérez-Turpin JA, Villa JG, Cortell JM, Chinchilla JJ. Temporal activity in particular segments and transitions in the olympic triathlon. J Hum Kinet. 2013;36(1):87-95. https://doi.org/10.2478/hukin-2013-0009

Vleck VE, Bürgi A, Bentley DJ. The consequences of swim, cycle, and run performance on overall result in elite Olympic distance triathlon. Int J Sport Med. 2006;27(01):43-48. https://doi.org/10.1055/s-2005-837502

Peeling P, Landers G. Swimming intensity during triathlon: a review of current research and strategies to enhance race performance. J Sport Sci. 2009;27(10):1079-1085. https://doi.org/10.1080/02640410903081878

Peeling PD, Bishop DJ, Landers GJ. Effect of swimming intensity on subsequent cycling and overall triathlon performance. Brit J Sport Med. 2005;39(12):960-964. https://doi.org/10.1136/bjsm.2005.020370

Craig N, Walsh C, Martin DT, Woolford S, Bourdon P, Stanef T, Savage B. Protocols for the physiological assessment of high-performance track, road and mountain cyclists. Physiological tests for elite athletes/Australian Sports Commission. Champaign (IL): Human Kinetics, 2000:258-77.

Belcher CP, Pemberton CL. The Use of the Blood Lactate Curve to Develop Training Intensity Guidelines for the Sports of Track and Field and Cross-Country. Int J of Exerc Sci. 2012;5(2):148-159. https://doi.org/10.1123/jce.6.2.148

Lopes RF, Osiecki R, Rama LMPL. Heart rate and blood lactate concentration response after each segment of the Olympic Triathlon event. Rev Bra Med Esporte. 2012;18(3):158-160. https://doi.org/10.1590/S1517-86922012000300003

Kreider RB, Boone T, Thompson WR, Burkes S, Cortes CW. Cardiovascular and thermal responses of triathlon performance. Med Sci Sport Exer. 1988;20(4):385-390. https://doi.org/10.1249/00005768-198808000-00010

Wu SS, Peiffer JJ, Peeling P, Brisswalter J, Lau WY, Nosaka K, Abbiss CR. Improvement of sprint triathlon performance in trained athletes with positive swim pacing. Int J Sports Physiol Perform. 2016;11(8):1024-1028. https://doi.org/10.1123/ijspp.2015-0580