Vol. 20 Núm. 79 (2020)
Área 2. BIOQUÍMICA DEL DEPORTE / BIOCHEMISTRY OF SPORT

RESPUESTA DE CREATINA QUINASA A UN EJERCICIO ANAEROBIO SUPRAMÁXIMO EN GENOTIPOS DE ACTN3

J. Güereca-Arvizuo
Universidad Autónoma de Ciudad Juárez
Biografía
A. Ramos-Jiménez
Universidad Autónoma de Ciudad Juárez
Biografía
V. Moreno-Brito
Universidad Autónoma de Chihuahua
Biografía
M. Cervantes-Borunda
Universidad Autónoma de Chihuahua
Biografía
R.P. Hernández-Torres
Universidad Autónoma de Chihuahua
Biografía
Publicado septiembre 30, 2020

Palabras clave:

Alfa-actinina-3, creatina quinasa, genética deportiva, polimorfismo genético
Cómo citar
Güereca-Arvizuo, . J., Ramos-Jiménez, . A., Moreno-Brito, V., Cervantes-Borunda, M., & Hernández-Torres, R. (2020). RESPUESTA DE CREATINA QUINASA A UN EJERCICIO ANAEROBIO SUPRAMÁXIMO EN GENOTIPOS DE ACTN3. Revista Internacional De Medicina Y Ciencias De La Actividad Física Y Del Deporte, 20(79), 381-393. https://doi.org/10.15366/rimcafd2020.79.001

Resumen

El objetivo del presente estudio fue investigar las diferencias en la actividad de la enzima Creatina Quinasa (CK) en pre y post ejercicio anaerobio supramáximo (EASM) en portadores de los genotipos del gen de la alfa-actinina-3 (ACTN3). Se reclutaron 39 hombres sanos físicamente activos (18-35 años) y se sometieron a un EASM de 30 s (Wingate). El gen ACTN3 se determinó a partir del ADN de glóbulos blancos en sangre periférica y se evaluó la actividad de la CK en muestras sanguíneas en condiciones basales, a las 24 y 48 h post EASM. Los portadores del genotipo XX vs RR presentaron 1,4 veces menor actividad de CK en condiciones basales (p<0,05) y una mayor actividad de CK a las 24 h post ejercicio (p<0,05). Una serie de EASM fue capaz de causar un incremento significativo de la actividad de CK a las 24 h en los portadores del genotipo XX.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ahmetov, I.I., Druzhevskaya, A.M., Lyubaeva, E.V., Popov, D.V., Vinogradova, O. L., and Williams, A.G. (2011). The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp Physiol. 96(12): 1302–1310. https://doi.org/10.1113/expphysiol.2011.060293

Baird, M.F., Graham, S.M., Baker, J.S., y Bickerstaff, G.F. (2012). Creatine-kinase-and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab, 2012;2012:960363. https://doi.org/10.1155/2012/960363

Bar-Or, O. (1987). The Wingate anaerobic test an update on methodology, reliability and validity. Sports Medicine, 4(6), 381-394. https://doi.org/10.2165/00007256-198704060-00001

Beggs, A. H., Byers, T.J., Knoll, J.H., Boyce, F.M., Bruns, G.A., y Kunkel, L.M. (1992). Cloning and Characterization of Two Human Skeletal Muscle Alpha-Actinin Genes Located on Chromosomes 1 and 11. J Biol Chem, 267(13), 9281-9288.

Belli, T., Crisp, A. H., y Verlengia, R. (2017). Greater muscle damage in athletes with ACTN3 R577X (RS1815739) gene polymorphism after an ultra-endurance race: a pilot study. Biol Sport, 34(2), 105-110. https://doi.org/10.5114/biolsport.2017.64583

Bray, M.S., Hagberg, J.M., Pérusse, L., Rankinen, T., Roth, S.M., Wolfarth, B., y Bouchard, C. (2009). The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc, 41(1), 35–73. https://doi.org/10.1249/MSS.0b013e3181844179

Broos, S., Malisoux, L., Theisen, D., van Thienen, R., Ramaekers, M., Jamart, C., …, and Francaux, M. (2016). Evidence for ACTN3 as a speed gene in isolated human muscle fibers. PLoS One. 11(3): 1-11. https://doi.org/10.1371/journal.pone.0150594

Broos, S., Van Leemputte, M., Deldicque, L., y Thomis, M. A. (2015). History-dependent force, angular velocity and muscular endurance in ACTN3 genotypes. Eur J Appl Physiol, 115, 1637–1643. https://doi.org/10.1007/s00421-015-3144-6

Clarkson, P. M., Hoffman, E. P., Zambraski, E., Gordish-Dressman, H., Kearns, A., Hubal, M., … y Devaney, J. M. (2005). ACTN3 and MLCK genotype associations with exertional muscle damage. J Appl Physiol, (1985), 99(2), 564-569. https://doi.org/10.1152/japplphysiol.00130.2005

Del Coso, J., Valero, M., Salinero, J.J., Lara, B., Díaz, G., Gallo-Salazar, C., … y Cacabelos. (2017). ACTN3 genotype influences exercise-induced muscle damage during a marathon competition. Eur J Appl Physiol, 117(3), 409-416. https://doi.org/10.1007/s00421-017-3542-z

Faul, F., Erdfelder, E., Lang, A.G., y Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146

Güereca-Arvizuo, J., Ramos-Jiménez, A., Flores-Martínez, N., Reyes-Leal, G y Hérnandez-Torres, R.P. (2017). ACTN3 genotypes and their association with athletes somatotype: Results of a pilot study. ECORFAN-Ecuador Journal 2017 4(6), 10-17.

Hammouda, O., Chtourou, H., Chaouachi, A., Chahed, H., Ferchichi, S., Kallel, C., … y Souissi, N. (2012). Effect of short-term maximal exercise on biochemical markers of muscle damage, total antioxidant status, and homocysteine levels in football players. Asian J Sports Med, 3(4), 239-246. https://doi.org/10.5812/asjsm.34544

Heath, B., and Carter, J.E. (1990). Somatotyping Development and Applications. Cambridge university press.

Hoffman, M. D., Ingwerson, J. L., Rogers, I. R., Hew-Butler, T., y Stuempfle, K. (2012). Increasing creatine kinase concentrations at the 161-km Western States Endurance Run. Wildernees Environ Med, 23(1), 56-60. https://doi.org/10.1016/j.wem.2011.11.001

Jansson, E., y Sylvén, C. (1985). Creatine kinase MB and citrate synthase in type I and type II muscle fibres in trained and untrained men. Eur J Appl Physiol Occup Physiol, 54(2), 207-209. https://doi.org/10.1007/BF02335931

Landau, M. E., Kenney, K., Deuster, P., Gonzalez, R. S., Contreras-Sesvold, C., Sambuughin, N., O’Connor, F. G., y Cambell, W. (2012). Investigation of the relationship between serum creatine kinase and genetic polymorphisms in military recruits. Military Medicine, 177(11), 1359-1365. https://doi.org/10.7205/MILMED-D-12-00086

Lee, F., Houweling, P., North, K., y Quinlan, K. (2016). How does alfa-actinin-3 deficiency alter muscle function? Mechanistic insights into ACTN3, the gene for speed. (2016). Biochimica et Biophysica Acta, 1863. 868-893. https://doi.org/10.1016/j.bbamcr.2016.01.013

MacArthur, D. G., y North, K. N. (2004). A gene for speed? The evolution and function of ?-actinin-3. Bioessays, 26(7), 786-795. https://doi.org/10.1002/bies.20061

MacArthur, D. G., Seto, J. T., Chan, S., Quinlan, K. G., Raftery, J. M., Turner, N., … y North, K. N. (2008). An Actn3 knockout mouse provides mechanistic insights into the association between alpha-actinin-3 deficiency and human athletic performance. Hum Mol Genet, 17(8), 1076-1086. https://doi.org/10.1093/hmg/ddm380

Martínez-Abat, A., Boulaiz, H., Prados, J., Marchal, J., Padial, P., Caba, O., Rodriguez-Serrano, F., Aranega, A. (2005). Release of A-Actin into serum after skeletal muscle damage. Br J Sports Med, 39(11), 830-834). https://doi.org/10.1136/bjsm.2004.017566

Meltzer, H.Y. (1971). Factors affecting serum creatine phosphokinase levels in the general population: the role of race, activity and age. Clin Chim Acta, 33, 165-172. https://doi.org/10.1016/0009-8981(71)90264-6

Mikami, E., Fuku, N., Murakami, H., Tsuchie, H., Takahashi, H., Ohiwa, N., … y Tanaka, M. (2014). ACTN3 R577X Genotype is Associated with Sprinting in Elite Japanese Athletes. Int J Sports Med, 35(2), 172-177. https://doi.org/10.1055/s-0033-1347171

Olds, T., Norton, K., and Clark, J. (2000). LifeSize user manual release 1.0 Educational Software for Body Composition Analysis. Australia: Human Kinetics, Inc.

Orysiak, J., Busko, K., Michalski, R., Mazur-Ró?ycka, J., Gajewski, J., Malczewska-Lenczowska, J., … y Pokrywka, A. (2014). Relationship between ACTN3 R577X polymorphism and maximal power output in elite Polish athletes. Medicina, 50(5), 303-308. https://doi.org/10.1016/j.medici.2014.10.002

Pimenta, E. M., Coelho, D. B., Cruz, I. R., Morandi, R. F., Veneroso, C. E., de Azambuja Pussieldi, G., Carvalho, M. R., Silami-Garcia, E., De Paz Fernández, J. A. (2012). The ACTN3 genotype in soccer players in response to acute eccentric training. Eur J Appl Physiol, 112(4), 1495-1503. https://doi.org/10.1007/s00421-011-2109-7

Rodas, G., Ventura, J. L., Cadefau, J. A., Cussó, R., y Parra, J. (2002). Un programa de entrenamiento intenso para un rápido mejoramiento tanto del metabolismo aeróbico como del anaeróbico. Apunts Medicina de I’Esport, 37(140), 5-12. https://doi.org/10.1016/S1886-6581(02)76031-3

Saunders, C. J., September, A. V., Xenophontos, S. L., Cariolou, M. A., Anastassiades, L. C., Noakes, T. D., y Collins, M. (2007). No association of the ACTN3 gene R577X polymorphism with endurance performance in Ironman Triathlons. Ann Hum Genet, 71(Pt 6), 777-781. https://doi.org/10.1111/j.1469-1809.2006.00385.x

Schumann, G., y Klauke, R. (2003). New IFCC reference procedures for the determination of catalytic activity concentrations of five enzymes in serum: preliminary upper reference limits obtained in hospitalized subjects. Clin Chim Acta, 327(1-2), 69-79. https://doi.org/10.1016/S0009-8981(02)00341-8

Seto, J., Lek, M., Quinlan, K., Houweling, J., Zheng, X., Garton, F., … North, N. (2011). Deficiency of alfa-actinin-3 is associated with increased susceptibility to contraction-induced damage and skeletal muscle remodeling. Human molecular genetics, 20(15), 2914-2927. https://doi.org/10.1093/hmg/ddr196

Thomas, S., Reading, J., y Shephard, R.J. (1992). Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can J Spt Sci, 17(4), 338-345.

Venckunas, T., Skurvydas, A., Brazaitis, M., Kamandulis, S., Snieckus, A., y Moran, C. N. (2012). Human alpha-actinin-3 genotype association with exercise-induced muscle damage and the repeated-bout effect. Appl. Physiol.Nutr. Metab, 37, 1-9. https://doi.org/10.1139/h2012-087

Vincent, H.K., Vincent, K.R. (1997). The effect of training status on the serum creatine kinase response, soreness and muscle function following resistance exercise. Int J Sports Med 1997, 18(6), 431-437. https://doi.org/10.1055/s-2007-972660

Vincent, B., Windelinckx, A., Nielens, H., Ramaekers, M., Van Leemputte, M., Hespel, P., y Thomis, M. A. (2010). Protective role of ?-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol (1985), 109(2), 564–573. https://doi.org/10.1152/japplphysiol.01007.2009

Wu, H. J., Chen, K. T., Shee, B. W., Chang, H. C., Huang, Y. J., y Yang, R. S. (2004). Effects of 24 h ultra-marathon on biochemical and hematological parameters. World J Gastroenterol, 10(18), 2711-2714. https://doi.org/10.3748/wjg.v10.i18.2711

Yang, N., MacArthur, D.G., Gulbin, J., Hahn, A., Beggs, A.H., Eastel, S., y North, K. (2003). ACTN3 Genotype Is Associated with Human Elite Athletic Performance. Am J Hum Genet, 73(3), 627–631. https://doi.org/10.1086/377590

Zanoteli, E., Lotuffo, R., Oliveira, A., Beggs, A. H., Canovas, M., Zatz, M., y Vainzof, M. (2002). Deficiency of Muscle ?-Actinin-3 is compatible with high muscle performance. J Mol Neurosci, 20(1), 39-42. https://doi.org/10.1385/JMN:20:1:39