Vol. 20 Núm. 78 (2020)


F.J. Calderón
Universidad Politécnica de Madrid
R. Cupeiro
Universidad Politécnica de Madrid
A.B. Peinado
Universidad Politécnica de Madrid
I. Lorenzo-Capella
Universidad Camilo José Cela
Publicado junio 1, 2020

Palabras clave:

ECG, Frecuencia Cardiaca, Entrenamiento Físico, Actividad Física


Este trabajo pretende dos objetivos: 1º) dar una visión pedagógica de la complejidad relativa al tratamiento matemático de la variabilidad de la frecuencia cardiaca y 2º) analizar si el tratamiento matemático de la señal RR (distancia entre dos ondas R del electrocardiograma) tiene una base fisiológica.

Se revisan los mecanismos fisiológicos que explican uno de los fenómenos de base para el análisis de la variabilidad: la arritmia sinusal respiratoria. Se analizan las bases matemáticas, así como los métodos matemáticos de valoración, de la variabilidad. Finalmente, se realiza una revisión del significado fisiológico de las bandas de frecuencia obtenidas mediante las diversas metodologías del tratamiento de la señal RR.

No está claro si los métodos matemáticos de tratamiento de la señal RR pueden ser una herramienta de valoración de la función vegetativa. Por ello, debemos tener precaución al interpretar esta variable, sobre todo en el contexto del ejercicio físico y entrenamiento.


Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring. Sports Medicine, 33(7), 517-538. https://doi.org/10.2165/00007256-200333070-00004

Billman, G. E. (2015). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Heart Rate Variability: Clinical Applications and Interaction between HRV and Heart Rate, 54.

Boron, W. F., & Boulpaep, E. L. (2012). Medical Physiology, 2e Updated Edition: with STUDENT CONSULT Online Access: Elsevier Health Sciences.

Borresen, J., & Lambert, M. I. (2008). Autonomic control of heart rate during and after exercise. Sports Medicine, 38(8), 633-646. https://doi.org/10.2165/00007256-200838080-00002

Cardiology, T. F. o. t. E. S. o. (1996). Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur Heart J, 17, 354-381. https://doi.org/10.1093/oxfordjournals.eurheartj.a014868

Casadei, B., Cochrane, S., JOHNSOTON, J., Conway, J., & Sleight, P. (1995). Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiologica Scandinavica, 153(2), 125-131. https://doi.org/10.1111/j.1748-1716.1995.tb09843.x

Cherniack, N., Adams, E., Prabhakar, N., Haxhiu, M., & Mitra, J. (1989). Integration of cardiorespiratory responses in the ventrolateral medulla. Progress in brain research, 81, 215-220. https://doi.org/10.1016/S0079-6123(08)62011-7

Coleridge, H. M., & Coleridge, J. C. G. (1986). Reflexes evoked from tracheobronchial tree and lungs. In A. P. Fishman (Ed.), Handbook of physiology. Section 3: The Respiratory System (Vol. II: Control of breathing, part I, pp. 407-413). Bethesda, Maryland: American Physiological Society.

Cottin, F., Durbin, F., & Papelier, Y. (2004). Heart rate variability during cycloergometric exercise or judo wrestling eliciting the same heart rate level. European journal of applied physiology, 91(2-3), 177-184. https://doi.org/10.1007/s00421-003-0969-1

Cottin, F., Papelier, Y., & Escourrou, P. (1999). Effects of exercise load and breathing frequency on heart rate and blood pressure variability during dynamic exercise. International journal of sports medicine, 20(4), 232-238. https://doi.org/10.1055/s-2007-971123

Das, G. (1989). Therapeutic review. Cardiac effects of atropine in man: an update. International journal of clinical pharmacology, therapy, and toxicology, 27(10), 473-477.

Evans, J. M., Ziegler, M. G., Patwardhan, A. R., Ott, J. B., Kim, C. S., Leonelli, F. M., & Knapp, C. F. (2001). Gender differences in autonomic cardiovascular regulation: spectral, hormonal, and hemodynamic indexes. Journal of Applied Physiology, 91(6), 2611-2618. https://doi.org/10.1152/jappl.2001.91.6.2611

Goldberger, J. J., Challapalli, S., Tung, R., Parker, M. A., & Kadish, A. H. (2001). Relationship of heart rate variability to parasympathetic effect. Circulation, 103(15), 1977-1983. https://doi.org/10.1161/01.CIR.103.15.1977

Hagerman, I., Berglund, M., Lorin, M., Nowak, J., & Sylvén, C. (1996). Chaos-related deterministic regulation of heart rate variability in time-and frequency domains: effects of autonomic blockade and exercise. Cardiovascular research, 31(3), 410-418. https://doi.org/10.1016/S0008-6363(95)00084-4

Hughson, R. L., Sutton, J. R., Fitzgerald, J. D., & Jones, N. L. (1977). Reduction of intrinsic sinoatrial frequency and norepinephrine response of the exercised rat. Canadian journal of physiology and pharmacology, 55(4), 813-820. https://doi.org/10.1139/y77-109

Jewett, D. (1964). Activity of single efferent fibres in the cervical vagus nerve of the dog, with special reference to possible cardio-inhibitory fibres. The Journal of Physiology, 175(3), 321. https://doi.org/10.1113/jphysiol.1964.sp007520

Jindal, V., Gupta, S., & Das, R. (2013). Molecular mechanisms of meditation. Molecular neurobiology, 48(3), 808-811. https://doi.org/10.1007/s12035-013-8468-9

Katona, P. G., & Jih, F. (1975). Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol, 39(5), 801-805. https://doi.org/10.1152/jappl.1975.39.5.801

Korner, P. (1971). The central nervous system and physiological mechanisms of “Optimal” cardiovascular control. Amer. J. exp. Biol. Med. Sci, 49, 319-343. https://doi.org/10.1038/icb.1971.35

Korner, P. I. (1971). Integrative neural cardiovascular control. Physiological Reviews, 51(2), 312-367. https://doi.org/10.1152/physrev.1971.51.2.312

Kunze, D. L. (1972). Reflex discharge patterns of cardiac vagal efferent fibres. The Journal of Physiology, 222(1), 1. https://doi.org/10.1113/jphysiol.1972.sp009784

Kuo, C.-D., Chen, G.-Y., Lai, S.-T., Wang, Y.-Y., Shih, C.-C., & Wang, J.-H. (1999). Sequential changes in heart rate variability after coronary artery bypass grafting. The American journal of cardiology, 83(5), 776-779. https://doi.org/10.1016/S0002-9149(98)00989-8

Kuo, T. B., Lin, T., Yang, C. C., Li, C.-L., Chen, C.-F., & Chou, P. (1999). Effect of aging on gender differences in neural control of heart rate. American Journal of Physiology-Heart and Circulatory Physiology, 277(6), H2233-H2239. https://doi.org/10.1152/ajpheart.1999.277.6.H2233

Lombardi, F. (2000). Chaos theory, heart rate variability, and arrhythmic mortality. Circulation, 101(1), 8-10. https://doi.org/10.1161/01.CIR.101.1.8

Ludwig, C. (1847). Beitrage zur Kenntniss des Einflusses der Respirationsbewegungen auf den Blutlauf im Aortensysteme. Arch. Anat. Physiol, 13, 242-302.

Malmo, R. B., Shagass, C., Davis, J., Cleghorn, R., Graham, B., & Goodman, A. J. (1948). Standardized pain stimulation as controlled stress in physiological studies of psychoneurosis. Science, 108(2810), 509-511. https://doi.org/10.1126/science.108.2810.509

Mourot, L., Bouhaddi, M., Perrey, S., Cappelle, S., Henriet, M. T., Wolf, J. P., . . . Regnard, J. (2004). Decrease in heart rate variability with overtraining: assessment by the Poincare plot analysis. Clinical physiology and functional imaging, 24(1), 10-18. https://doi.org/10.1046/j.1475-0961.2003.00523.x

Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., . . . Piccaluga, E. (1986). Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation research, 59(2), 178-193. https://doi.org/10.1161/01.RES.59.2.178

Piccirillo, G., Ogawa, M., Song, J., Chong, V. J., Joung, B., Han, S., . . . Chen, P.-S. (2009). Power spectral analysis of heart rate variability and autonomic nervous system activity measured directly in healthy dogs and dogs with tachycardia-induced heart failure. Heart Rhythm, 6(4), 546-552. https://doi.org/10.1016/j.hrthm.2009.01.006

Rosenblueth, A., & Simeone, F. (1934). The interrelations of vagal and accelerator effects on the cardiac rate. American Journal of Physiology--Legacy Content, 110(1), 42-55. https://doi.org/10.1152/ajplegacy.1934.110.1.42

Sandercock, G., & Brodie, D. (2006). The use of heart rate variability measures to assess autonomic control during exercise. Scandinavian journal of medicine & science in sports, 16(5), 302-313. https://doi.org/10.1111/j.1600-0838.2006.00556.x

Sandercock, G., Bromley, P. D., & Brodie, D. A. (2005). Effects of exercise on heart rate variability: inferences from meta-analysis. Med Sci Sports Exerc, 37(3), 433-439. https://doi.org/10.1249/01.MSS.0000155388.39002.9D

Sarmiento Montesdeoca, S., García-Manso, J. M., Martín-González, J., Medina, G., Calderón, F., & Rodríguez Ruíz, D. (2009). Análisis tiempo-frecuencia de la variabilidad de la frecuencia cardiaca (VFC) durante la aplicación de un esfuerzo incremental en ciclistas. dEsdE la ExpEriEncia, 71.

Schramm, L. P. (2006). Spinal sympathetic interneurons: their identification and roles after spinal cord injury. Progress in brain research, 152, 27-37. https://doi.org/10.1016/S0079-6123(05)52002-8

Silva, C., Pereira, L. M., Cardoso, J. R., Moore, J. P., & Nakamura, F. Y. (2014). The Effect of physical training on heart rate variability in healthy children: A systematic review with meta-analysis. Pediatr Exerc Sci, 26(2), 147-158. https://doi.org/10.1123/pes.2013-0063

Silva, V. P., Oliveira, N. A., Silveira, H., Mello, R. G. T., & Deslandes, A. C. (2015). Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review. Annals of Noninvasive Electrocardiology, 20(2), 108-118. https://doi.org/10.1111/anec.12237

Singh, J. P., Larson, M. G., O'Donnell, C. J., & Levy, D. (2001). Genetic factors contribute to the variance in frequency domain measures of heart rate variability. Autonomic Neuroscience, 90(1), 122-126. https://doi.org/10.1016/S1566-0702(01)00277-6

Singh, J. P., Larson, M. G., O’Donnell, C. J., Tsuji, H., Corey, D., & Levy, D. (2002). Genome scan linkage results for heart rate variability (the Framingham Heart Study). The American journal of cardiology, 90(12), 1290-1293. https://doi.org/10.1016/S0002-9149(02)02865-5

Singh, J. P., Larson, M. G., O’Donnell, C. J., Tsuji, H., Evans, J. C., & Levy, D. (1999). Heritability of Heart Rate Variability The Framingham Heart Study. Circulation, 99(17), 2251-2254. https://doi.org/10.1161/01.CIR.99.17.2251

Tanaka, H., Dinenno, F. A., Monahan, K. D., Clevenger, C. M., DeSouza, C. A., & Seals, D. R. (2000). Aging, habitual exercise, and dynamic arterial compliance. Circulation, 102(11), 1270-1275. https://doi.org/10.1161/01.CIR.102.11.1270

Taylor, E. W., Leite, C. A., Sartori, M. R., Wang, T., Abe, A. S., & Crossley, D. A. (2014). The phylogeny and ontogeny of autonomic control of the heart and cardiorespiratory interactions in vertebrates. The Journal of experimental biology, 217(5), 690-703. https://doi.org/10.1242/jeb.086199

Tsuji, H., Venditti, F. J., Manders, E. S., Evans, J. C., Larson, M. G., Feldman, C. L., & Levy, D. (1996). Determinants of heart rate variability. Journal of the American College of Cardiology, 28(6), 1539-1546. https://doi.org/10.1016/S0735-1097(96)00342-7

Turner, D. L. (1991). Cardiovascular and respiratory control mechanisms during exercise: an integrated view. J Exp Biol, 160, 309-340.

Umetani, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. Journal of the American College of Cardiology, 31(3), 593-601. https://doi.org/10.1016/S0735-1097(97)00554-8

Verberne, A. J., & Owens, N. C. (1998). Cortical Modulation of theCardiovascular System. Progress in neurobiology, 54(2), 149-168. https://doi.org/10.1016/S0301-0082(97)00056-7