Vol. 20 Núm. 78 (2020)
Área 2. BIOMECÁNICA / BIOMECHANIC

NADAR 2,5-KM INDOOR DISMINUYE EL NITRITO Y pH EN AIRE ESPIRADO CONDENSADO

A. Calderón
Universidad de la Frontera
Biografía
O.F. Araneda
Universidad de los Andes
Biografía
L. Terreros
Municipalidad de Las Condes
Biografía
G. Cavada
Universidad Finis Terrae
Biografía
Publicado junio 1, 2020

Palabras clave:

natatión, daño oxidativo, condensado del aire espirado
Cómo citar
Calderón, A., Araneda, O., Terreros, L., & Cavada, G. (2020). NADAR 2,5-KM INDOOR DISMINUYE EL NITRITO Y pH EN AIRE ESPIRADO CONDENSADO. Revista Internacional De Medicina Y Ciencias De La Actividad Física Y Del Deporte, 20(78), 197-210. https://doi.org/10.15366/rimcafd2020.78.001

Resumen

OBJETIVO: determinar el efecto de una prueba aeróbica de natación en piscina clorada indoor sobre la concentración de NO2-, H2O2 y el pH en el condensado del aire espirado. MÉTODO: diez nadadores aficionados nadaron 2,5 km en piscina clorada. Se obtuvieron muestras antes y en cuatro oportunidades durante las ocho horas posteriores a la prueba. El análisis estadístico usó modelos mixtos y la prueba de Spearman RESULTADOS: la prueba se realizó a 74,99±10,10 % de la reserva cardíaca y duró 50,80±8,98 minutos. Posterior a la prueba disminuyó el NO2- (p=0,04) y el pH (p=0,02) en el condensado del aire espirado. Los valores pre-ejercicio se relacionaron con los cambios absolutos p=0,0002, p=0,047 y con el volumen de entrenamiento p=0,017, p=0,077 para NO2- y H2O2 respectivamente. CONCLUSIONES: la natación en piscina clorada disminuye la concentración de NO2- y el pH en el condensado del aire espirado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Araneda, OF., García, C., Lagos, N., Quiroga, G., Cajigal, J., Salazar, M.P., & Behn, C. (2005). Lung oxidative stress as related to exercise and altitude. Lipid peroxidation evidence in exhaled breath condensate: a possible predictor of acute mountain sickness. Eur J Appl Physiol,95, 383-90. https://doi.org/10.1007/s00421-005-0047-y

Araneda O.F., Carbonell T., Tuesta M. (2016). Update on the Mechanisms of Pulmonary Inflammation and Oxidative Imbalance Induced by Exercise. Oxid Med Cell Longev, 4868536. https://doi.org/10.1155/2016/4868536

Araneda, O.F. & Salazar, M.P. (2009). Design and evaluation of a device for collecting exhaled breath condensate. J Bras Pneumol, 35, 69-72. https://doi.org/10.1590/S1806-37132009000100010

Araneda O.F., Urbina-Stagno R., Tuesta M., Haichelis D., Alvear M., Salazar M.P., García C. (2014). Increase of pro-oxidants with no evidence of lipid peroxidation in exhaled breath condensate after a 10-km race in non-athletes. J Physiol Biochem, 70(1), 107-15. https://doi.org/10.1007/s13105-013-0285-0

Causer, A. J., Shute, J. K., Cummings, M. H., Shepherd, A. I., Gruet, M., Costello, J. T., Bailey, S., Lindley, M., Pearson, C., Connett, G., Allenby, M. I., Carroll, M. P., Daniels, T., & Saynor, Z. L. (2020). Circulating biomarkers of antioxidant status and oxidative stress in people with cystic fibrosis: A systematic review and meta-analysis. Redox biology, 101436. https://doi.org/10.1016/j.redox.2020.101436

Cavaleiro, Rufo J., Paciência, I., Silva, D., Martins, C., Madureira, J., Oliveira Fernandes, E., Padrão, P., Moreira, P., Delgado, L., Moreira, A. (2018) Swimming pool exposure is associated with autonomic changes and increased airway reactivity to a beta-2 agonist in school aged children: A cross-sectional survey. PLoS One,13(3), e0193848. https://doi.org/10.1371/journal.pone.0193848

Davies, R. Parent, E., Steinback, C., Kennedy, M. (2018) The Effect of Different Training Loads on the Lung Health of Competitive Youth Swimmers. Int J Exerc Sci, 11(6),999-101.

Ferdinands, J.M., Crawford, C.G., Greenwald, R., David, Van Sickle, D., Hunter, E., & Teague, W.G. (2008). Breath acidification in adolescent runners exposed to atmospheric pollution: A prospective, repeated measures observational study. Environmental Health, 7(10), 2008. https://doi.org/10.1186/1476-069X-7-10

Font-Ribera, L., Kogevinas, M., Zock, J.P., Gómez, F.P., Barreiro, E., Nieuwenhuijsen, M.J., Fernandez, P., Lourencetti, C., Pérez-Olabarría, M., Bustamante, M., Marcos, R., Grimalt, J.O., & Villanueva, C.M. (2010). Short-Term Changes in Respiratory Biomarkers after Swimming in a Chlorinated Pool. Environ Health Perspect, 118, 1538-1544. https://doi.org/10.1289/ehp.1001961

Gay C., & Gebicki J. (2002). Perchloric acid enhances sensitivity and reproducibility of the ferric-xylenol orange peroxide assay. Anal Biochem, 304(1), 42-6. https://doi.org/10.1006/abio.2001.5566

Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., & Tannenbaum, S.R. (1982). Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem, 126, 131-8. https://doi.org/10.1016/0003-2697(82)90118-X

Heinicke, I., Boehler, A., Rechsteiner, T., Bogdanova, A., Jelkmann, W., Hofer, M., Rawlings, P., Araneda, O.F., Behn, C., Gassmann, M., & Heinicke, K. (2009). Moderate altitude but not additional endurance training increases markers of oxidative stress in exhaled breath condensate. Eur J Appl Physiol, 106, 599-604. https://doi.org/10.1007/s00421-009-1014-9

Hunt, J. (2007). Exhaled breath condensate pH assays. Immunol Allergy Clin North Am, 27, 597-606. https://doi.org/10.1016/j.iac.2007.09.006

Konstantinidi E.M., Lappas A.S., Tzortzi A.S., Behrakis P.K. (2015) Exhaled Breath Condensate: Technical and Diagnostic Aspects. Scientific World Journal, 435160. https://doi.org/10.1155/2015/435160

Magherini, F., Fiaschi, T., Marzocchini, R., Mannelli, M., Gamberi, T., Modesti, P. A., & Modesti, A. (2019). Oxidative stress in exercise training: the involvement of inflammation and peripheral signals. Free radical research, 53(11-12), 1155-1165. https://doi.org/10.1080/10715762.2019.1697438

Marek, E., Mückenhoff, K., Streckert, H.J., Becher, G., & Marek, W. (2008) Measurements of L-lactate and H2O2 in exhaled breath condensate at rest and mild to moderate exercise in young and healthy subjects. Pneumologie, 62, 541-7. https://doi.org/10.1055/s-2008-1038170

Morissette M. , Murray N. , Turmel J., Milot J., Boulet L.P., Bougault V. (2016) Increased exhaled breath condensate 8-isoprostane after a swimming session in competitive swimmers. Eur J Sport Sci, 16(5), 569-76. https://doi.org/10.1080/17461391.2015.1063702

Nourooz-Zadeh, J., Tajaddini-Sarmadi, J., & Wolf, S.P. (1994). Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem, 220, 403-409. https://doi.org/10.1006/abio.1994.1357

Nowak, D., Kalucka, S., Bia?asiewicz, P., & Król, M. Exhalation of H2O2 and thiobarbituric acid reactive substances (TBARs) by healthy subjects. (2001). Free Radic Biol Med, 15, 178-86. https://doi.org/10.1016/S0891-5849(00)00457-3

Paget-Brown, A.O., Ngamtrakulpanit, L., Smith, A., Bunyan, D., Hom, S., Nguyen, A., & Hunt, J.F. Normative data for pH of exhaled breath condensate. (2006). Chest, 129, 426-30. https://doi.org/10.1378/chest.129.2.426

Powers S.K., Sollanek K.J., Wiggs M.P., Demirel H.A., Smuder A.J. (2014). Exercise-induced improvements in myocardial antioxidant capacity: the antioxidant players and cardioprotection. Free Radic Res, 48(1), 43-51. https://doi.org/10.3109/10715762.2013.825371

Riediker, M. & Danuser, B. (2007). Exhaled breath condensate pH is increased after moderate exercise. J Aerosol Med, 20, 13-8. https://doi.org/10.1089/jam.2006.0567

Tuesta, M., Alvear, M., Carbonell, T., García, C., Guzmán-Venegas, R., Araneda, O.F. (2016) Effect of exercise duration on pro-oxidants and pH in exhaled breath condensate in humans. J Physiol Biochem,72(2), 353-60. https://doi.org/10.1007/s13105-016-0486-4