Concurrencia de fatiga y potenciación tras una contracción voluntaria máxima sostenida / Concurrence Of Fatigue And Potentiation After A Sustained Maximal Voluntary Contraction

A. Vera-Ibáñez, S. Romero-Arenas, C. Marín-Pagán, G. Márquez

Resumen


El objetivo del presente estudio fue analizar la concurrencia e interacción existente entre diferentes factores que afectan al rendimiento, tales como son la fatiga  central, la fatiga periférica y la potenciación post-activación (PPA) tras la realización de una contracción máxima voluntaria (CMV) sostenida hasta la pérdida del 50% en los valores de fuerza iniciales. Con el objetivo de valorar los efectos de la fatiga central, fatiga periférica y la PPA se utilizó la técnica de interpolación de descargas. Los resultados han revelado pérdidas en los valores de durante aproximadamente 3´30´´ y que la fatiga dependió tanto de factores centrales como periféricos. También se produjo una inhibición de la PPA tras la realización de la CMV sostenida, durante un breve periodo de tiempo (entre 30´´ y 1´30´´). Además, se observó la coexistencia de los distintos fenómenos estudiados, que sin embargo, demostraron tener una curva de recuperación temporal diferente.

PALABRAS CLAVE: Fatiga central, fatiga periférica, potenciación post-activación, técnica de interpolación de descargas.

ABSTRACT

The aim of the present study was to analyze the concurrence and interaction between different factors affecting the performance, such as central fatigue, peripheral fatigue and post-activation potentiation (PAP) after the performance of a maximal voluntary contraction (MVC) sustained until the loss of the 50% of the initial torque value. In order to assess the effects of central fatigue, peripheral fatigue and the PAP on the performance of the MVC, the twitch interpolation technique was used. Our findings revealed a loss of the  force capability during at least 3'30'' and that the recorded fatigue had central and peripheral contributions. Moreover, it has been observed an inhibition of the PAP after the completion of the sustained MVC during a brief interval (between 30´´ and 1´30´´). Furthermore, it has been observed the coexistence of the different studied phenomena, however, they showed different time course of the recovery.

KEY WORDS: Central fatigue, peripheral fatigue, post-activation potentiation, maximal twitch interpolation technique.


Texto completo:

ESP ENG

Referencias


Aagaad, P., Simonsen, E. B., Andersen, J. L., Magnusson, P., & Dyhre-Poulsen, P. (2002). Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. Journal of Applied Physiology, 92(6), 2309-2318. https://doi.org/10.1152/japplphysiol.01185.2001

Allen, D. G., Lamb, G. D., & Westerblad, H. (2008). Skeletal muscle fatigue: cellular mechanisms. Physiological reviews, 88(1), 287-332. https://doi.org/10.1152/physrev.00015.2007

Allen, G. M., Gandevia, S. C., & McKenzie, D. K. (1995). Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle & nerve, 18(6), 593-600. https://doi.org/10.1002/mus.880180605

Babault, N., Desbrosses, K., Fabre, M. S., Michaut, A., & Pousson, M. (2006). Neuromuscular fatigue development during maximal concentric and isometric knee extensions. Journal of Applied Physiology, 100(3), 780-785. https://doi.org/10.1152/japplphysiol.00737.2005

Baker, A. J., Kostov, K. G., Miller, R. G., & Weiner, M. W. (1993). Slow force recovery after long-duration exercise: metabolic and activation factors in muscle fatigue. Journal of Applied Physiology, 74(5), 2294-2300. https://doi.org/10.1152/jappl.1993.74.5.2294

Barcroft, H., & Millen, J. L. E. (1939). The blood flow through muscle during sustained contraction. The Journal of physiology, 97(1), 17-31. https://doi.org/10.1113/jphysiol.1939.sp003789

Baudry, S., & Duchateau, J. (2004). Postactivation potentiation in human muscle is not related to the type of maximal conditioning contraction. Muscle & nerve, 30(3), 328-336. https://doi.org/10.1002/mus.20101

Belanger, A. Y., McComas, A. J., & Elder, G. B. C. (1983). Physiological properties of two antagonistic human muscle groups. European journal of applied physiology and occupational physiology, 51(3), 381-393. https://doi.org/10.1007/BF00429075

Belanger, A. Y., & McComas, A. J. (1989). Contractile properties of human skeletal muscle in childhood and adolescence. European journal of applied physiology and occupational physiology, 58(6), 563-567. https://doi.org/10.1007/BF00418500

Bigland-Ritchie, B., Johansson, R., Lippold, O. C., Smith, S., & Woods, J. J. (1983). Changes in motoneurone firing rates during sustained maximal voluntary contractions. The Journal of Physiology, 340(1), 335-346. https://doi.org/10.1113/jphysiol.1983.sp014765

Bigland-Ritchie, B., Jones, D. A., Hosking, G. P., & Edwards, R. H. T. (1978). Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clin Sci Mol Med, 54(6), 609-614. https://doi.org/10.1042/cs0540609

Bigland-Ritchie, B., Jones, D. A., & Woods, J. J. (1979). Excitation frequency and muscle fatigue: electrical responses during human voluntary and stimulated contractions. Experimental neurology, 64(2), 414-427. https://doi.org/10.1016/0014-4886(79)90280-2

Bigland-Ritchie, B., Kukulka, C. G., Lippold, O. C., & Woods, J. J. (1982). The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. The Journal of physiology, 330(1), 265-278. https://doi.org/10.1113/jphysiol.1982.sp014340

Bigland-Ritchie, B., & Woods, J. J. (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle and Nerve 7, 691-699. https://doi.org/10.1002/mus.880070902

Cady, E. B., Jones, D. A., Lynn, J., & Newham, D. J. (1989). Changes in force and intracellular metabolites during fatigue of human skeletal muscle. The Journal of Physiology, 418(1), 311-325. https://doi.org/10.1113/jphysiol.1989.sp017842

Chiu, L. Z., Fry, A. C., Weiss, L. W., Schilling, B. K., Brown, L. E., & Smith, S. L. (2003). Postactivation potentiation response in athletic and recreationally trained individuals. The Journal of Strength & Conditioning Research, 17(4), 671-677.

Degroot, M., Massie, B. M., Boska, M., Gober, J., Miller, R. G., & Weiner, M. W. (1993). Dissociation of [H+] from fatigue in human muscle detected by high time resolution 31P‐NMR. Muscle & nerve, 16(1), 91-98. https://doi.org/10.1002/mus.880160115

Edwards, R. H., Hill, D. K., Jones, D. A., & Merton, P. A. (1977). Fatigue of long duration in human skeletal muscle after exercise. The Journal of physiology, 272(3), 769-778. https://doi.org/10.1113/jphysiol.1977.sp012072

Enoka, R. M., & Stuart, D. G. (1992). Neurobiology of muscle fatigue. J Appl Physiol, 72(5), 1631-1648. https://doi.org/10.1152/jappl.1992.72.5.1631

Fernández-del-Olmo, M., Rodriguez, F. A., Márquez, G., Iglesias, X., Marina, M., Benitez, A., ... & Acero, R. M. (2013). Isometric knee extensor fatigue following a Wingate test: peripheral and central mechanisms. Scandinavian journal of medicine & science in sports, 23(1), 57-65. https://doi.org/10.1111/j.1600-0838.2011.01355.x

Gandevia, S. C. (1992). Some central and peripheral factors affecting human motoneuronal output in neuromuscular fatigue. Sports Medicine, 13(2), 93-98. https://doi.org/10.2165/00007256-199213020-00004

Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological reviews, 81(4), 1725-1789. https://doi.org/10.1152/physrev.2001.81.4.1725

Gandevia, S. C., Allen, G. M., Butler, J. E., & Taylor, J. L. (1996). Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. The Journal of physiology, 490(Pt 2), 529-536. https://doi.org/10.1113/jphysiol.1996.sp021164

Gandevia, S. C., McNeil, C. J., Carroll, T. J., & Taylor, J. L. (2013). Twitch interpolation: superimposed twitches decline progressively during a tetanic contraction of human adductor pollicis. The Journal of physiology, 591(5), 1373-1383. https://doi.org/10.1113/jphysiol.2012.248989

Garland, S. J., & McComas, A. J. (1990). Reflex inhibition of human soleus muscle during fatigue. The Journal of physiology, 429(1), 17-27. https://doi.org/10.1113/jphysiol.1990.sp018241

Garner, S. H., Hicks, A. L., & McComas, A. J. (1989). Prolongation of twitch potentiating mechanism throughout muscle fatigue and recovery. Experimental neurology, 103(3), 277-281. https://doi.org/10.1016/0014-4886(89)90051-4

Girard, O., Bishop, D. J., & Racinais, S. (2013). Neuromuscular adjustments of the quadriceps muscle after repeated cycling sprints. PloS one, 8(5), e61793. https://doi.org/10.1371/journal.pone.0061793

Gossen, E. R., & Sale, D. G. (2000). Effect of postactivation potentiation on dynamic knee extension performance. European journal of applied physiology,83(6), 524-530. https://doi.org/10.1007/s004210000304

Grange, R. W., Vandenboom, R., & Houston, M. E. (1993). Physiological significance of myosin phosphorylation in skeletal muscle. Canadian Journal of Applied Physiology, 18(3), 229-242. https://doi.org/10.1139/h93-020

Hamada, T., Sale, D. G., MacDougall, J. D., & Tarnopolsky, M. A. (2000). Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. Journal of Applied Physiology, 88(6), 2131-2137. https://doi.org/10.1152/jappl.2000.88.6.2131

Hamada, T., Sale, D. G., MacDougall, J. D., & Tarnopolsky, M. A. (2003). Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta physiologica scandinavica, 178(2), 165-173. https://doi.org/10.1046/j.1365-201X.2003.01121.x

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of electromyography and Kinesiology, 10(5), 361-374. https://doi.org/10.1016/S1050-6411(00)00027-4

Hodgson, M., Docherty, D., & Robbins, D. (2005). Post-activation potentiation.Sports Medicine, 35(7), 585-595. https://doi.org/10.2165/00007256-200535070-00004

Humphreys, P. W., & Lind, A. R. (1963). The blood flow through active and inactive muscles of the forearm during sustained hand‐grip contractions. The Journal of physiology, 166(1), 120-135. https://doi.org/10.1113/jphysiol.1963.sp007094

Hunter, S. K., Butler, J. E., Todd, G., Gandevia, S. C., & Taylor, J. L. (2006). Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. Journal of Applied Physiology, 101(4), 1036-1044. https://doi.org/10.1152/japplphysiol.00103.2006

Kay, D., St Clair Gibson, A., Mitchell, M. J., Lambert, M. I., & Noakes, T. D. (2000). Different neuromuscular recruitment patterns during eccentric, concentric and isometric contractions. Journal of Electromyography and Kinesiology, 10(6), 425-431 https://doi.org/10.1016/S1050-6411(00)00031-6

Kent-Braun, J. A. (1999). Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. European journal of applied physiology and occupational physiology, 80(1), 57-63. https://doi.org/10.1007/s004210050558

Krarup, C. (1981). Enhancement and diminution of mechanical tension evoked by staircase and by tetanus in rat muscle. The Journal of physiology, 311(1), 355-372. https://doi.org/10.1113/jphysiol.1981.sp013589

Löscher, W. N., Cresswell, A. G., & Thorstensson, A. (1996). Central fatigue during a long-lasting submaximal contraction of the triceps surae. Experimental Brain Research, 108(2), 305-314. https://doi.org/10.1007/BF00228103

Macefield, G., Hagbarth, K. E., Gorman, R., Gandevia, S. C., & Burke, D. (1991). Decline in spindle support to alpha-motoneurones during sustained voluntary contractions. The Journal of physiology, 440(1), 497-512. https://doi.org/10.1113/jphysiol.1991.sp018721

Masiulis, N., Skurvydas, A., Kamandulis, S., Kudirkaitė, J., Sukockas, V., Valys, E., ... & Kamandulienė, L. (2007). Post-activation potentiation and fatigue of quadriceps muscle after continuous isometric contractions at maximal and submaximal intensities. Education. Physical Training. Sport, (67).

McKenzie, D. K., Bigland-Ritchie, B., Gorman, R. B., & Gandevia, S. C. (1992). Central and peripheral fatigue of human diaphragm and limb muscles assessed by twitch interpolation. The Journal of physiology, 454(1), 643-656. https://doi.org/10.1113/jphysiol.1992.sp019284

Merton, P. A. (1954). Voluntary strength and fatigue. The Journal of physiology,123(3), 553-564. https://doi.org/10.1113/jphysiol.1954.sp005070

Millet, G. Y., Martin, V., Martin, A., & Vergès, S. (2011). Electrical stimulation for testing neuromuscular function: from sport to pathology. European journal of applied physiology, 111(10), 2489-2500. https://doi.org/10.1007/s00421-011-1996-y

Nordlund, M. M., Thorstensson, A., & Cresswell, A. G. (2004). Central and peripheral contributions to fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. Journal of applied physiology,96(1), 218-225. https://doi.org/10.1152/japplphysiol.00650.2003

Palmer, B. M., & Moore, R. L. (1989). Myosin light chain phosphorylation and tension potentiation in mouse skeletal muscle. American Journal of Physiology-Cell Physiology, 257(5), C1012-C1019. https://doi.org/10.1152/ajpcell.1989.257.5.C1012

Rassier, D. E., & Macintosh, B. R. (2000). Coexistence of potentiation and fatigue in skeletal muscle. Brazilian Journal of Medical and Biological Research, 33(5), 499-508. https://doi.org/10.1590/S0100-879X2000000500003

Robbins, D. W. (2005). Postactivation potentiation and its practical applicability. The Journal of Strength & Conditioning Research, 19(2), 453-458. https://doi.org/10.1519/00124278-200505000-00035

Schillings, M. L., Hoefsloot, W., Stegeman, D. F., & Zwarts, M. J. (2003). Relative contributions of central and peripheral factors to fatigue during a maximal sustained effort. European journal of applied physiology, 90(5-6), 562-568. https://doi.org/10.1007/s00421-003-0913-4

Schmitz, R. J., Arnold, B. L., Perrin, D. H., Granata, K. P., Gaesser, G. A., & Gansneder, B. M. (2002). Effect of isotonic and isometric knee extension exercises on mechanical and electromyographical specificity of fatigue.Isokinetics and exercise science, 10(4), 167-175.

Shield, A., & Zhou, S. (2004). Assessing voluntary muscle activation with the twitch interpolation technique. Sports Medicine, 34(4), 253-267. https://doi.org/10.2165/00007256-200434040-00005

Søgaard, K., Gandevia, S. C., Todd, G., Petersen, N. T., & Taylor, J. L. (2006). The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. The Journal of physiology, 573(2), 511-523. https://doi.org/10.1113/jphysiol.2005.103598

Stackhouse, S. K., Dean, J. C., Lee, S. C., & Binder-MacLeod, S. A. (2000). Measurement of central activation failure of the quadriceps femoris in healthy adults. Muscle & nerve, 23(11), 1706-1712. https://doi.org/10.1002/1097-4598(200011)23:11<1706::AID-MUS6>3.0.CO;2-B

Taylor, J. L., & Gandevia, S. C. (2001). Transcranial magnetic stimulation and human muscle fatigue. Muscle & nerve, 24(1), 18-29. https://doi.org/10.1002/1097-4598(200101)24:1<18::AID-MUS2>3.0.CO;2-D

Taylor, J. L., & Gandevia, S. C. (2008). A comparison of central aspects of fatigue in submaximal and maximal voluntary contractions. Journal of Applied Physiology, 104(2), 542-550. https://doi.org/10.1152/japplphysiol.01053.2007

Tillin, M. N. A., & Bishop, D. (2009). Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities.Sports Medicine, 39(2), 147-166. https://doi.org/10.2165/00007256-200939020-00004

Todd, G., Taylor, J. L., & Gandevia, S. C. (2003). Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. The Journal of physiology, 551(2), 661-671. https://doi.org/10.1113/jphysiol.2003.044099

Vandervoort, A. A., & McComas, A. J. (1983). A comparison of the contractile properties of the human gastrocnemius and soleus muscles. European journal of applied physiology and occupational physiology, 51(3), 435-440. https://doi.org/10.1007/BF00429079

Vandervoort, A. A., Quinlan, J., & McComas, A. J. (1983). Twitch potentiation after voluntary contraction. Experimental neurology, 81(1), 141-152. https://doi.org/10.1016/0014-4886(83)90163-2

Xenofondos, A., Laparidis, K., Kyranoudis, A., Galazoulas, C., Bassa, E., & Kotzamanidis, C. (2010). Post-activation potentiation: factors affecting it and the effect on performance. Journal of Physical Education & Sport/Citius Altius Fortius, 28(3).




DOI: http://dx.doi.org/10.15366/rimcafd2018.69.004

Enlaces refback

  • No hay ningún enlace refback.