Efecto de sobrecargas ligeras sobre el rendimiento del salto vertical con contramovimiento / Effect Of Light Overloads On Countermovement Vertical Jump Performance

M. Gutiérrez-Dávila, C. González, F.J. Giles, D. Gallardo, F.J. Rojas


El propósito de este estudio ha sido determinar el efecto de diferentes sobrecargas ligeras sobre el impulso vertical, la velocidad del centro de masas y el máximo pico de potencia, durante la realización de dos saltos verticales máximos consecutivos. Han participado 28 deportistas practicantes de modalidades deportivas donde el salto vertical constituye una habilidad básica. Se ha utilizado una plataforma de fuerza, operando a 500 Hz, sincronizada temporalmente a una cámara de vídeo, que registraba a 210 Hz el plano sagital de los saltos realizados sobre la plataforma. Los resultados indican que, cuando se utilizan sobrecargas del 7,5% del peso corporal, el tiempo utilizado durante la fase de contramovimiento se incrementa. El impulso vertical y el pico de potencia no varían con el uso de los diferentes niveles de las sobrecargas utilizadas, sin embargo, la velocidad de despegue se reduce un porcentaje similar al incremento de la carga.

PALABRAS CLAVE: Biomecánica, fuerza, impulso, sobrepeso, salto vertical.



The purpose of this study was to determine the effect of different light overloads on the vertical impulse, velocity of center of mass and peak power during two consecutive maximum vertical jumps. 28 athletes practicing different sports where vertical jump is a basic skill have participated. A force platform, operating at 500 Hz, temporally synchronized to a video camera, which recorded at 210 Hz the sagittal plane of the jumps were used for the analysis. The results have shown that when overloads of 7,5% of body weight  were used , the time used for the counter- phase increased. The vertical impulse and peak power did not vary with the use of different levels of light overloads used in this study, however, the take-off velocity the CM was reduced with a similar percentage that increased the overload.

KEYWORDS: Biomechanics, force, impulse, overweight, vertical jump.

Texto completo:



Aragón-Vargas, L.F. (2000). Evaluation of four vertical jump tests: Methodology, reliability, validity and accuracy. Measurement in Physical Education and Exercise Science, 4, 215–228. https://doi.org/10.1207/S15327841MPEE0404_2

Bobbert, M.F., Huijing, P., y van Ingen Schenau, G.J. (1987). Drop jump II. The influence of dropping height on the biomechanics of jumping. Medicine and Science in Sports and Exercise, 19, 339–346. PMid:3657482

Clark, K.P., Stearne, D.J., Walts, C.T., y Miller, A.D. (2010). The longitudinal effects of resisted sprint training using weighted sleds vs. weighted vests. Journal of Strength and Conditioning Research, 24(12), 3287-3295. https://doi.org/10.1519/JSC.0b013e3181b62c0a PMid:19996786

Cormie, P., McBride, J.M., y McCaulley, G.O. (2008). Power-time, force-time, and velocity-time curve analysis during the jump squat: Impact of load. Journal of Applied Biomechanics, 24, 112–120. https://doi.org/10.1123/jab.24.2.112 PMid:18579903

Cormie, P., McCaulley, G.O., y McBride, J.M. (2007a). Validation of power measurement in dynamic lower body resistance exercise. Journal of Applied Biomechanics, 23, 112–127. https://doi.org/10.1123/jab.23.2.103

Cormie, P., McCaulley, G.O. Triplett, T., y McBride, J.M. (2007b). Optimal loading for maximal power output during lower-body resistance exercises. Medicine and Science in Sports and Exercise, 39, 340-349. https://doi.org/10.1249/01.mss.0000246993.71599.bf. PMid:17277599

Cronin, J., Hansen, K., Kawamori, N., y McNair, C. (2008). Effects of weighted vest and sled towing on sprint kinematic. Sports Biomechanics, 7(2), 160-172. https://doi.org/10.1080/14763140701841381 PMid:18610770

De Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanovs segment inertia parameters. Journal of Biomechanics. 29(9), 1223-1230.https://doi.org/10.1016/0021-9290(95)00178-6

Driss, T., Vandewalle, H., Quievre, J., Miller, C., y Monod, H. (2001). Effects of external loading on power output in a squat jump on a force platform: a comparison between strength and power athletes and sedentary individuals. Journal of Sports Sciences, 19, 99–105. https://doi.org/10.1080/026404101300036271 PMid:11217015

Dugan E.L., Doyle T.L., Humphries B., Hasson C.J., y Newton R.U. (2004). Determining the optimal load for jump squats: a review of methods and calculations. Journal of Strength and Conditioning Research, 18(3), 668–732. https://doi.org/10.1519/1533-4287(2004)18<668:dtolfj>2.0.co;2

Faigenbaum, A.D., McForland, J.E., Shwerdtman, J.A., Ratamess N.A., Kang J., y Hoffman, J.R. (2006). Dynamic warm protocols, with and without a weighted vest, and fitness performance in high school female athletes. Journal of Atletic Training, 41(4), 357-363. PMid:17273458 PMCid:PMC1748418

Feltner, M.E., Bishop, E.J., y Perez, C.M. (2004). Segmental and kinetic contributions in vertical jumps performed with and without an arm swing. Research Quarterly for Exercise and Sport, 75, 3, 216-230. https://doi.org/10.1080/02701367.2004.10609155 PMid:15487286

Feltner, M.E., Fraschetti, D.J., y Crisp, R.J. (1999). Upper extremity augmentation of lower extremity kinetics during countermovement vertical jumps. Journal of Sports Sciences, 17, 449–466. https://doi.org/10.1080/026404199365768 PMid:10404494

Fitts, R.H., y Widrick, J.J. (1996). Muscle mechanics: adaptations with exercise-training. Exercise and Sport Sciences Reviews, 85, 427–73. https://doi.org/10.1249/00003677-199600240-00016

Gutiérrez-Dávila, M.; Gutiérrez Cruz, C., Garrido, J.M., y Giles F.J. (2012). Efecto de la restricción segmentaria en los test de salto vertical CMJ. Archivos de Medicina del Deporte. XXV(147), 527-535.

Hara, M., Shibayama, A., Takeshita, D., y Fukashiro, S. (2006). The effect of arm swing on lower extremities in vertical jumping. Journal of Biomechanics, 39, 2503-2511. https://doi.org/10.1016/j.jbiomech.2005.07.030 PMid:16168998

Jaric, S., y Markovic, G. (2009). Leg muscle design: the maximum dynamic output hypothesis. Medicine & Science in Sports Exercise, 41, 780–787. https://doi.org/10.1249/MSS.0b013e31818f2bfa PMid:19276856

Kaneko, M., Fuchimoto, T., Toji, H., y Suei, K. (1983). Training effect of different loads on the force–velocity relationship and mechanical power output in human muscle. Scandinavian Journal Sports Sciences, 5, 50–55.

Khlifa, R., Aouadi, R., Hermassi, S., Chelly, M.S., Jlid, M.C., Hbacha, H., y Castagna, C. (2010). Effects of a plyometric training program with and without added load on jumping ability in basketball players. Journal of Strength and Conditioning Research, 24(11), 2955-2966. https://doi.org/10.1519/JSC.0b013e3181e37fbe PMid:20938357

Komi, P.V. (1984). Physiological and biomechanical correlates of muscle function: Effects of muscle structure and stretch-shortening cycle on force and speed. Exercise and Sport Sciences Reviews, 12, 81-121. https://doi.org/10.1249/00003677-198401000-00006 PMid:6376140

Lees, A., Vanrenterghem, J., y De Clercq, D. (2004). Understanding how an arm swing enhances performance in the vertical jump. Journal of Biomechanics, 37, 1929-1940. https://doi.org/10.1016/j.jbiomech.2004.02.021 PMid:15519601

Markovic, G., y Jaric, S. (2007). Positive and negative loading and mechanical output in maximum vertical jumping. Medicine and Science in Sports and Exercise, 39(10), 1757–1764. https://doi.org/10.1249/mss.0b013e31811ece35 PMid:17909403

McBride, J.M., Kirby, T.J., Hainess, T.L., y Skinner, J. (2010). Relationship between relative net vertical impulse and jump height in jump squats performed to various squat depths and with various loads. International Journal of Sports Physiology and Performance, 5, 484-496. https://doi.org/10.1123/ijspp.5.4.484

Peng, H.T. (2011). Changes in Biomechanical properties during drop jumps of incremental height. Journal of Strength and Conditioning Research, 25(9), 2510-2518. https://doi.org/10.1519/JSC.0b013e318201bcb3 PMid:21869631

Schmidt R.A., y Lee, T.D. (2011). Motor control and learning: A behavioral emphasis (5 th ed.). Champain, IL: Human Kinetics.

Shoepe, T.C., Stelzer, J.E., Garner, D.P., y Widrick, J.J. (2003) Functional adaptability of muscle fibers to long-term resistance exercise. Medicine & Science in Sports & Exercise, 35(6), 944–951. https://doi.org/10.1249/01.MSS.0000069756.17841.9E PMid:12783042

Stone, M.H., O'Bryant H.S., McCoy, L., Coglianese, R., Lehmkuhl, M., y Schilling, B. (2003). Power and maximum strength relationships during performance of dynamic and static weighted jumps. Journal of Strength and Conditioning Research, 17(1), 140–147. https://doi.org/10.1519/00124278-200302000-00022

Thompsen, A.G., Kackley, T., Palumbo, M.A., y Faigenbaum, A.D. (2007). Acute effects of different warm-up protocols with and without a weighted vest on jumping performance in athletic women. Journal of Strength and Conditioning Research, 21(1), 52-56. https://doi.org/10.1519/00124278-200702000-00010 PMid:17313270

Wallace, B.J., Kernozek, T.W., Write, J.M., Kline, D.E., Wright, G.A., Peng, H., y Huang, C. (2010). Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. Journal of Strength and Conditioning Research, 24(1), 207-212 https://doi.org/10.1519/JSC.0b013e3181c3b841 PMid:19924006

Winter, D.A. (1990). Biomechanics and Motor Control of Human Movement (2nd ed.). New York: Wiley Interscience.

Wood, G.A., y Jennings, L.S. (1979). On the use of spline functions for data smoothing. Journal of Biomechanics, 12, 477-479. https://doi.org/10.1016/0021-9290(79)90033-2

Zatsiorsky, V.M., y Seluyanov, N.V. (1983). The mass and inertial characteristics of the main segments of the human body. In: Biomechanics VIII-B. Matsui, H. and K. Kobayashi (Eds) Champaign, I.L: Human Kinetics, 1152-1159.

DOI: http://dx.doi.org/10.15366/rimcafd2016.64.002

Enlaces refback

  • No hay ningún enlace refback.