Vol. 22 Núm. 85 (2022):
Área 2. BIOQUÍMICA DEL DEPORTE

Comportamiento de las colinesterasas tras condiciones de fatiga en corredores de fondo

B. Rangel-Colmenero
Universidad Autónoma de Nuevo León (México)
Biografía
J.R. Hoyos-Flores
Universidad Autónoma de Nuevo León (México)
Biografía
G. Hernández-Cruz
Universidad Autónoma de Nuevo León (México)
Biografía
J. Miranda-Mendoza
Universidad Autónoma de Nuevo León (México)
Biografía
R.A. González-Fimbres
Universidad Estatal de Sonora (México)
Biografía
L.F. Reynoso-Sánchez
Universidad Autónoma de Occidente (México)
Biografía
J. Naranjo-Orellana
Universidad Pablo de Olavide (España)
Biografía
Publicado marzo 16, 2022

Palabras clave:

Acetilcolinesterasa, Butirilcolinesterasa, Recuperación, Marcadores de carga interna, Variabilidad de la frecuencia cardiaca
Cómo citar
Rangel-Colmenero, B., Hoyos-Flores, J., Hernández-Cruz, G., Miranda-Mendoza, J., González-Fimbres, R., Reynoso-Sánchez, L., & Naranjo-Orellana, J. (2022). Comportamiento de las colinesterasas tras condiciones de fatiga en corredores de fondo. Revista Internacional De Medicina Y Ciencias De La Actividad Física Y Del Deporte, 22(85), 35–45. https://doi.org/10.15366/rimcafd2022.85.003

Resumen

El objetivo del presente estudio fue evaluar el efecto de un entrenamiento intenso en atletas de resistencia sobre el comportamiento de las colinesterasas (ChE) tras condiciones de fatiga y su relación con otros marcadores de carga interna. Participaron 18 atletas de sexo masculino especialistas en pruebas de resistencia. Se evaluó las ChE y dos índices de variabilidad de la frecuencia cardiaca en tres momentos diferentes, previo al protocolo (BASAL), 15 minutos posterior al protocolo (FINAL) y 24 horas después del entrenamiento (24H). Un ANOVA de una vía con post-hoc de Tukey HSD se utilizó para comparar las medias. Se encontraron cambios significativos en las variables analizadas (p < .001) con tamaños de efecto muy grandes (d > 0.9) en los diferentes momentos y correlaciones moderadas entre variables (p < .001). El comportamiento de las ChE muestra un cambio significativo (p < .001) posterior al ejercicio y una relación con otros indicadores de carga interna. Nuestros resultados indican que las ChE tienen relación con la fatiga en el caso de los deportistas estudiados, pudiendo ser una medida para determinar la carga de entrenamiento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Borresen J, Lambert MI. The quantification of training load, the training response and the effect on performance. Sports Med. 2009; 39(9): 779–795. https://doi.org/10.2165/11317780-000000000-00000

Halson SL. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014; 44(2): 139–147. https://doi.org/10.1007/s40279-014-0253-z

Brink MS, Nederhof E, Visscher C, Schmikli SL, Lemmink KA. Monitoring load, recovery, and performance in young elite soccer players. J Strength Cond Res. 2010; 24(3): 597-603. https://doi.org/10.1519/JSC.0b013e3181c4d38b

Edwards RH. Human muscle function and fatigue. Ciba Found Symp. 1981; 82: 1–18. https://doi.org/10.1002/9780470715420.ch1

Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001; 81(4):1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725

Garrandes F, Colson SS, Pensini M, Seynnes O, Legros P. Neuromuscular fatigue profile in endurance-trained and power-trained athletes. Med Sci Sports Exerc. 2007; 39(1): 149-158. https://doi.org/10.1249/01.mss.0000240322.00782.c9

Boyas S, Guével A. Neuromuscular fatigue in healthy muscle: underlying factors and adaptation mechanisms. Ann Phys Rehabil Med. 2011; 54(2): 88-108. https://doi.org/10.1016/j.rehab.2011.01.001

Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY. Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol. 2002; 92(4): 1487-1493. https://doi.org/10.1152/japplphysiol.00880.2001

Noakes TD. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports. 2000; 10(3): 123-145. https://doi.org/10.1034/j.1600-0838.2000.010003123.x

Buchheit M. Monitoring training status with hr measures: do all roads lead to Rome? Front Physiol. 2014; 5: 73. https://doi.org/10.1034/j.1600-0838.2000.010003123.x

Michael S, Graham KS, Davis GM. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals – A Review. Front Physiol. 2017; 8: 301. https://doi.org/10.3389/fphys.2017.00301

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996; 93: 1043–1065.

Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013; 43(9): 773-781. https://doi.org/10.3389/fphys.2017.00301

Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med. 2013; 43(12): 1259-1277. https://doi.org/10.1007/s40279-013-0083-4

Naranjo J, De La Cruz B, Sarabia E, De Hoyo M, Domínguez S. Two new indexes for the assessment of autonomic balance in elite soccer players. Int J Sports Physiol Perform. 2015; 10(4): 452–457. https://doi.org/10.1123/ijspp.2014-0235

Wen G, Hui W, Dan C, Xiao-Qiong W, Jian-Bin T, Chang-Qi L, De-Liang L, Wei-Jun C, Zhi-Yuan L, Xue-Gang L. The effects of exercise-induced fatigue on acetylcholinesterase expression and activity at rat neuromuscular junctions. Acta Histochem Cytochem. 2009; 42(5): 137-142. https://doi.org/10.1267/ahc.09019

Kutty KM. Biological function of cholinesterase. Clin Biochem. 1980; 13(6): 239-243. https://doi.org/10.1016/S0009-9120(80)80001-4

Soreq H, Seidman S. Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci. 2001; 2(4): 294-302. https://doi.org/10.1038/35067589

Ryhänen R, Kajovaara M, Harri M, Kaliste-Korhonen E, Hänninen O. Physical exercise affects cholinesterases and organophosphate response. Gen Pharmacol. 1988; 19(6): 815-818. https://doi.org/10.1016/S0306-3623(88)80011-9

Zimmer KR, Lencina CL, Zimmer AR, Thiesen FV. Influence of physical exercise and gender on acetylcholinesterase and butyrylcholinesterase activity in human blood samples. Int J Environ Health Res. 2012; 22(3): 279-286. https://doi.org/10.1080/09603123.2011.634389

Chamera T, Spieszny M, Klocek T, Kostrzewa-Nowak D, Nowak R, Lachowicz M, Buryta R, Ficek K, Eider J, Moska W, Ci?szczyk P. Post-Effort Changes in Activity of Traditional Diagnostic Enzymatic Markers in Football Players’ Blood. J Med Biochem. 2015; 34(2): 179-190. https://doi.org/10.2478/jomb-2014-0035

World Medical Association. WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects. 2013. https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/

Clinical and Laboratory Standards Institute. Procedures for the Collection of Diagnostic Blood Specimens by Venipuncture. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute; 2017.

Cohen J. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: L. Erlbaum Associates; 1988.

Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009; 41(1): 3-12. https://doi.org/10.1249/MSS.0b013e31818cb278

Farías JM, Mascher D, Paredes-Carbajal MC, Torres-Durán PV, Juárez-Oropeza MA. El marcapaso del corazón puede ser modulado por la acetilcolina mediante una vía delimitada a la membrana. Revista de Educación Bioquímica. 2010; 29(2): 29-38.

Canaani J, Shenhar-Tsarfaty S, Weiskopf N, Yakobi R, Assayag EB, Berliner S, Soreq H. Serum AChE Activities Predict Exercise Heart Rate Parameters of Asymptomatic Individuals. Neurosci Med. 2010; 1(2): 43-49. https://doi.org/10.4236/nm.2010.12007

Nóbrega ACL, dos Reis AF, Moraes RS, Bastos BG, Ferlin EL, Ribeiro JP. Enhancement of heart rate variability by cholinergic stimulation with pyridostigmine in healthy subjects. Clin Auton Res. 2001; 11(1): 11-17. https://doi.org/10.1007/BF02317797

Dewland TA, Androne AS, Lee FA, Lampert RJ, Katz SD. Effect of acetylcholinesterase inhibition with pyridostigmine on cardiac parasympathetic function in sedentary adults and trained athletes. Am J Physiol Heart Circ Physiol. 2007; 293(1): H86-H92. https://doi.org/10.1152/ajpheart.01339.2006

Androne AS, Hryniewicz K, Goldsmith R, Arwady A, Katz SD. Acetylcholinesterase inhibition with pyridostigmine improves heart rate recovery after maximal exercise in patients with chronic heart failure. Heart. 2003; 89(8): 854-858. https://doi.org/10.1136/heart.89.8.854

Miranda-Mendoza J, Reynoso-Sánchez LF, Hoyos-Flores JR, Quezada-Chacón JT, Naranjo J, Rangel-Colmenero B, Hernández-Cruz G. Stress score y LnrRMSSD como parámetros de carga interna durante una competición. Rev Int Med Cienc Act Fís Deporte. 2020; 20(77): 21-35. https://doi.org/10.15366/rimcafd2020.77.002

González-Fimbres RA, Ramírez-Siqueiros MG, Vaca-Rubio H, Moueth-Cabrera MT, Hernández-Cruz G. Relación entre VFC post-ejercicio y la carga interna de entrenamiento en triatletas. Rev Int Med Cienc Act Fís Deporte. 2020; 20(77): 87-102. https://doi.org/10.15366/rimcafd2020.77.006

Abellán-Aynés O, López-Plaza D, Alacid F, Naranjo-Orellana J, Manonelles P. Recovery of Heart Rate Variability After Exercise Under Hot Conditions: The Effect of Relative Humidity. Wilderness Environ Med. 2019; 30(3): 160-167. https://doi.org/10.1016/j.wem.2019.04.009

Valenzuela PL, Sánchez-Martínez G, Torrontegi E, Vázquez-Carrión J, González M, Montalvo Z, Millet GP. Acute Responses to On-Court Repeated-Sprint Training Performed With Blood Flow Restriction Versus Systemic Hypoxia in Elite Badminton Athletes. Int J Sports Physiol Perform. 2019; 14(9): 1280-1287. https://doi.org/10.1123/ijspp.2018-0878

Houssiere A, Najem B, Ciarka A, Velez-Roa S, Naeije R, van de Borne P. Chemoreflex and metaboreflex control during static hypoxic exercise. Am J Physiol Heart Circ Physiol. 2005; 288(4): H1724– H1729. https://doi.org/10.1152/ajpheart.01043.2004

Fisher JP, Seifert T, Hartwich D, Young CN, Secher NH, Fadel PJ. Autonomic control of heart rate by metabolically sensitive skeletal muscle afferents in humans. J Physiol. 2010; 588(7): 1117–1127. https://doi.org/10.1113/jphysiol.2009.185470

Ray CA, Hume KM. Sympathetic neural adaptation to exercise training in humans: Insights from microneurography. Med. Sci. Sports Exerc. 1998; 30: 387–391. https://doi.org/10.1097/00005768-199803000-00008

Goldberger JJ, Le FK, Lahiri M, Kannankeril PJ, Ng J, Kadish AH. Assessment of parasympathetic reactivation after exercise. Am J Physiol Heart Circ Physiol. 2006; 290(6): H2446-H2452. https://doi.org/10.1152/ajpheart.01118.2005

Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implication for training prescription. Sports Med. 2013; 43(12):1259-1277. https://doi.org/10.1007/s40279-013-0083-4

Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol. 2007; 293: H133-H141. https://doi.org/10.1152/ajpheart.00062.2007

Al Haddad H, Laursen PB, Ahmaidi S, Buchheit M. Nocturnal heart rate variability following supramaximal intermittent exercise. Int J Sports Physiol Perform. 2009; 4(4): 435-447. https://doi.org/10.1123/ijspp.4.4.435