Núm. 6 (2022): MetalEspaña 2020/2021. III Congreso de Conservación y Restauración del Patrimonio Metálico
Artículos

Propuesta para la conservación de una amplia colección de objetos arqueológicos de hierro

Publicado mayo 11, 2023

Palabras clave:

conservación de materiales, cloruros, tratamientos masivos, tratamientos colectivos, akaganeíta, corrosión
Cómo citar
García Boullosa, L. (2023). Propuesta para la conservación de una amplia colección de objetos arqueológicos de hierro. Anejos a Cuadernos De Prehistoria Y Arqueología, (6). https://doi.org/10.15366/ane2022.6.031

Resumen

En las excavaciones arqueológicas que se realizan en Bizkaia (País Vasco) suelen recuperarse decenas o cientos de objetos fabricados en hierro. Teniendo en cuenta la localización próxima al mar de los yacimientos, existe la posibilidad de que las condiciones de enterramiento tengan un alto contenido en cloruros —un acelerador de la corrosión—, por lo que podemos prever que estos materiales comenzarán a deteriorarse inmediatamente tras la excavación.
Mitigar la corrosión de amplias colecciones de materiales férricos se presenta como un desafío. En este sentido, desde el Arkeologi Museoa se ha desarrollado un modelo de intervención que tiene como objetivo la estabilización de una gran cantidad de objetos, tratando de minimizar los costes y mejorando la eficiencia de las intervenciones. El tratamiento ha sido aplicado a un grupo de objetos arqueológicos. En este artículo se presentan los resultados obtenidos, las ventajas e inconvenientes y los riesgos
asociados a la conservación a largo plazo de estos materiales. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ECCO: European Confederation of Conservator-restorers’ Organization (2003). Professional Guidelines: The profession, code of ethics, basic requirements for education in conservation-restoration. Brussels.

Einarsdóttir, S. (2012): Mass-conservation of Archaeological Iron Artefacts: A Case Study at the National Museum of Iceland. Grade Thesis. Göteborgs Universitet: Institutionen för kulturvård.

Keene, S. (1994): “Real-time survival rates for treatments of archaeological iron”. En D.A. Scott, J. Podany y B. Considme (eds): Ancient & Historic Metals: Conservation and Scientific Research. Getty Conservation Institute: 249-264.

Lewis, M.T (2009): The Influence of Atmospheric Moisture on Corrosion of Chloride-Contaminated Wrought Iron. pHD Thesis. Cardiff University.

Mazzola, C. (2009): “What to do with Large Quantity Finds in Archaeological Collections”? – A KUR project”. News in conservation, 15.

North, N. A. y Pearson, C. (1975): “Alkaline Sulfite Reduction Treatment of Marine Iron”. ICOM Committee for Conservation 4th Triennial Meeting. Venice.

North, N.A. y Pearson, C. (1978): “Washing Methods for Chloride Removal from Marine Iron Artefacts“. Studies in Conservation, 23, 4: 174-186.

Refait, P. y Génin, R. (1997): “The mechanisms of oxidation of ferrous hydroxychloride ?-Fe2(OH)3Cl in aqueous solution: the formation of akaganeite vs goethite”. Corrosion Science, 39: 539-553.

Rimmer, M. (2012): “The efficiency of chloride extraction from archaeological iron objects using deoxygenated alkaline solutions”. Studies in Conservation, 57: 29-41.

Schmidt-Ott, K. y Oswald, N. (2006a): “Neues zur Eisenentsalzung mit alkalischem Sulfit”. VDR Beiträge, 2: 126-134.

Schmidt-Ott, K. y Oswald, N., (2006b): “Alkaline sulfite desalination: tips and tricks”. VDR conference handbook. ‘Archaeological Metal Finds – From Excavation to Exhibition’. Mannheim.

Schmutzler, B. y Ebinger?Rist, N. (2008): “The conservation of iron objects in archaeological preservation – Application and further development of alkaline sulphite method for conservation of large quantities of iron finds”. Materials and Corrosion, 59: 248-253.

Schrier, L. (1976): Corrosion Handbook. Newnes-Butterworth. London.

Selwyn, L. (2004): “Overview of archaeological iron: The corrosion problem, key factors affecting treatment, and gaps in current knowledge”. Metal 04: Proceedings of the International Conference on Metals Conservation. Canberra: 294-306.

Turgoose S. (1982): “Post Excavation Changes in Iron Antiquities.” Studies in Conservation, 27: 97?101.

Vivies, P., Cook, D., Drews, M., González, N., Mardikian, P. y Memet, J.B. (2007): “Transformation of akaganeita in archaeological iron artefacts using subcritical treatment”. Metal 07: Proceedings of the International ICOM-CC Metal WG Conference. Amsterdam: 5, 26-30.

Wang, Q. (2007): “An investigation of deterioration of archaeological Iron”. Studies in Conservation, 52: 25?134.

Wang, Q., Dove, S., Shearman, F. y Smirniou, M. (2008): “Evaluation of methods of chloride ion concentration determination and effectiveness of desalination treatments using sodium hydroxide and alkaline sulphite solutions”. The Conservator, 31:1: 67-74.

Watkinson, D. (1983): “Degree of mineralization: its significance for the stability and treatment of excavated ironwork”. Studies in Conservation, 28: 85?90.

Watkinson D. y Lewis, M.T (2005): “Desiccated Storage of Chloride Contaminated Archaeological Iron Objects”. Studies in Conservation, 50:4: 241-252.

Watkinson, D. y Al?Zahrani, A. (2008): “Towards quantified assessment of aqueous chloride extraction methods for archaeological iron: De?oxygenated treatment environments”. The Conservator, 31:1: 75?86.

Watkinson, D., Rimmer M. y Emmerson, N. (2019): “The Influence of Relative Humidity and Intrinsic Chloride on Post-excavation Corrosion Rates of Archaeological Wrought Iron”. Studies in Conservation, 64:8: 456-471.