AMORTIGUACIÓN DE LOS SALTOS VERTICALES SEGÚN EL PROPÓSITO DEL MOVIMIENTO DEPORTIVO POSTERIOR

M. Gutiérrez-Dávila, F.J. Rojas, J. Olivares, D. Pancorbo

Resumen


El principal objetivo ha sido detectar las diferencias biomecánicas de tres modelos de aterrizaje: a) aterrizaje discreto (AD), con misión de amortiguar un salto vertical, b) aterrizaje preparatorio al salto vertical (APS) y c) aterrizaje que precedía a una carrera (APC). Han participado 29 deportistas donde el salto constituye una habilidad básica. Se ha utilizado una plataforma de fuerza sincronizada a una cámara de vídeo que registraba el plano sagital de los saltos. Los resultados indican que los APS y APC amortiguan más los picos de fuerza de reacción vertical que los AD. El modelo cinemático utilizado para los APS fue similar al AD, aunque la mayor actividad neural y refleja propia del ciclo estiramiento-acortamiento para realizar el posterior salto vertical haría más eficiente la absorción de impactos. La estrategia utilizada para los APC muestra un incremento del riesgo de lesión como consecuencia del desplazamiento hacia delante de la tibia.


Palabras clave


Biomecánica; Salto vertical; aterrizaje; fuerzas

Texto completo:

PDF PDF (English)

Referencias


Cámara, J., Calleja-González, J., Martínez, R., Fernández-López, J.R. (2013). The effect of basketball footwear on the vertical ground reaction force during the landing phase of drop jumps. Revista de Psicología Deportiva, 22(1): 179-182.

Caster B.L. (1993). The effect of height and post-landing movement task on landing performance. In: J.Hamill, T.Derrick, E.Elliot (eds.) Biomechanics in Sports XI. University of Massachusetts, Amherst, USA: 60-64.

Cavagna, GA, Dusman, B, and Margaria, R. (1968). Positive work done by previously stretched muscle. Journal Applied Physiology, 24: 21–32.

https://doi.org/10.1152/jappl.1968.24.1.21

Chappell, J.D., Yu, B., Kirkendall, D.T. and Garret, W.E. (2002). A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. The American Journal of Medicine, 30(2) 261-267.

https://doi.org/10.1177/03635465020300021901

Cortes, N., Onate, J., Abrantes, J. Gagen, L. Dowling, E. and Van Lunen, B. (2007). Effects of gender and foot-landing techniques on lower extremity kinematics during drop-jump landings, Journal of Applied Biomechains, 23: 289-299. https://doi.org/10.1123/jab.23.4.289

Cowling, E.J., & Steele, J.R. (2001). Is lower limb muscle synchrony during landing affected by gender? Implications for variations in ACL injury rates. Journal of Electromyography and Kinesiology, 11, 263-268.

https://doi.org/10.1016/S1050-6411(00)00056-0

Decker, M.J., Torry, M.R., Wyland, D.J., Sterett, W.I. and Steadman, J.R. (2003). Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clinical Biomechanics, 18: 662-669.

https://doi.org/10.1016/S0268-0033(03)00090-1

de Leva, P. (1996). Adjustments to Zatsiorsky–Seluyanovs segment inertia parameters. Journal of Biomechanics, 29, 1223–1230.

https://doi.org/10.1016/0021-9290(95)00178-6

Ericksen, HM., Gribble, PA., Pfile, KR. and Pietrosimone, BG. (2013). Different modes of feedback and peak veltical ground reaction force during jump landing. A systematic review. Journal of Athletic Training, 48(5): 685-692.

https://doi.org/10.4085/1062-6050-48.3.02

Gollhofer, A. & Kyröläinen, H. (1991). Neuromuscular control of the human leg extensor muscles in jump exercise under various stretch-load conditions. International Journal Sports Medicine. 12: 34-40.

https://doi.org/10.1055/s-2007-1024652

Gutiérrez-Dávila, M.; Campos, J.; Navarro, E. (2009). A comparation of two landing styles in a two-foot vertical Jump. Journal of Strength and Conditioning Research. 23(1): 325 - 331. https://doi.org/10.1519/JSC.0b013e3181874806

Gutiérrez-Dávila, M.; Garrido, J.M.; Amaro, F.; Ramos, M. y Rojas, F.J. (2012). Método para determinar la contribución segmentaria en los saltos. Su aplicación en el salto vertical con contramovimiento. Motricidad. European Journal of Human Movement, 29, 1-21

Gutiérrez-Dávila, M. Garrido, J.M. Amaro, F.J. and Rojas (2014). Contribución segmentaria en los saltos con contramovimiento en vertical y en horizontal. RICYDE. Revista internacional de ciencias del deporte, 38(10): 289-304. https://doi.org/10.5232/ricyde2014.03801

Gutiérrez-Dávila, M.; Giles, J.; González, C.; Gallardo, D.; Rojas, F.J. (2015). Efecto de la intensidad del contramovimiento sobre el rendimiento del salto vertical. Apunts. Educación Física y Deportes, 119: 87 - 96.

https://doi.org/10.5672/apunts.2014-0983.es.(2015/1).119.06

Hewett, T.E., Myer, G.D., Ford, K.R., Heidt, R.S., Colosimo, A.J., McLean, S.G., van den Bogert, A.J., Paterno, M.V. and Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading on the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. American Journal of Sports Medicine. 33(4):492–501.

https://doi.org/10.1177/0363546504269591

Komi, P.V. (1992). Stretch-shortening cycle. In: Komi, P.V. (Ed.) Strength and Power in Sport. (169-179). Blackwell Scientific Publ: Oxford.

Kulig, K., Fietzer, A.L. and Popovich, J.M., (2011). Ground reaction forces and knee mechanics in the weight acceptance phase of a dance leap take-off and landing. Journal of Sports Sciences, 29(2): 125-131.

https://doi.org/10.1080/02640414.2010.534807

Lacquaniti, F. (1992). Automatic control of limb movement and posture. Current Opinion in Neurobiology. 2: 807-821.

https://doi.org/10.1016/0959-4388(92)90138-B

Lees, A. (1981). Methods of impact absorption when landing from a jump. Engineering in Medicine. 10: 207-211.

https://doi.org/10.1243/EMED_JOUR_1981_010_055_02

Lobietti, R., Coleman, S., Pizzichillo, E. and Merni, F. (2010). Landing techniques in volleyball. Journal of Sports Sciences, 28(13): 1469-1476.

https://doi.org/10.1080/02640414.2010.514278

McNair, P. J., Prapavessis, H. and Callender, K. (2000). Decreasing landing forces: effect of instruction. British Journal of Sports Medicine, 34(4): 293-295 https://doi.org/10.1136/bjsm.34.4.293

McNair P.J., Marshall R.N. (1994). Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints. Archives of Physical Medicine and Rehabilitation. 75(5):584–589.

McNintt-Gray, J. (2000). Subject specific coordination of two and one joint muscles during landings suggests multiple control criteria. Motor Control, 4: 1-44.

Niu, W., Zhang, M. and Zhao, Q. (2013). Dynamic postural stability for double-leg drop landing, Journal of Sports Sciences, 31(10): 1074-1081.

https://doi.org/10.1080/02640414.2012.762600

Pancorbo, D., Olivares, J. y Rojas, F.J. Gutiérrez-Dávila, M. (2016). Contribución de los brazos en el aterrizaje del salto vertical. En García-López, J., y Ogueta‐Alday, Ana, Actas del XXXIX Congreso de la Sociedad Ibérica de Biomecánica y Biomateriales, SIBB 2016 León, 21-23 de octubre de 2016.

Peng, H. (2011). Changes in biomechanical properties during drop jumps of incremental height. Journal of Strength and Conditioning Research, 25(9): 2510-2518. https://doi.org/10.1519/JSC.0b013e318201bcb3

Ridderikhoff, A.; Batelaan, J.H., & Bobbert, M.F. (1999). Jumping for distance: control of the external force in squat jumps. Medicine Science Sports Exercise, 31, 1196-1204 https://doi.org/10.1097/00005768-199908000-00018

Rojano, D., Rodríguez, E., Berral, F.J. (2013). Analysis of the vertical ground reaction forces and temporal factors in the landing phase of a countermovement jump. Journal of Sports Sciences and Medicine, 9: 282-287.

Rowley, K.M. and Richards, J.G. (2015). Increasing plantarflexion angle during landing reduces vertical ground reaction forces, loading rates and the hip's contribution to support moment within participants. Journal of Sports Sciences, 33(18): 1922-1931.

https://doi.org/10.1080/02640414.2015.1018928

Schot, P.K., Bates, B.T. and Dufek, J.S. (1994). Bilateral performance symmetry during drop landing: a kinetic analysis. Medicine & Science in Sports & Exercise, 26: 1153-1159.

https://doi.org/10.1249/00005768-199409000-00013

Sampello, M. (2005). Review of motor control mechanisms underlying impact absorption from falls. Gait and Posture, 21: 85-97.

https://doi.org/10.1016/j.gaitpost.2004.01.005

Sampello, M., McDonagh, M.J.N. and Challis, J.H. (2001). Visual and no visual control of landing movements in humans. Journal of Physiology, 537: 313-340. https://doi.org/10.1111/j.1469-7793.2001.0313k.x

Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th ed.). Champaign, IL: Human Kinetics.

Waller, M., Gersick, M., & Holman, D. (2013). Varius jump training styles for improvement of vertical jump performance. Strength and Conditioning Journal, 35(1), 82-89. https://doi.org/10.1519/SSC.0b013e318276c36e

Winter, D. (1990). Biomechanics and motor control of human movement. New York, NY: John Wiley.

Zhang, S.N., Bates, B.T., Dufek, J.S. (2000). Contributions of lower extremity joints to energy dissipation during landings. Medicine & Science in Sports & Exercise. 32: 812-819.

https://doi.org/10.1097/00005768-200004000-00014

Zatsiorsky, V. M., & Seluyanov, N. V. (1983). The mass and inertial characteristics of the main segments of the human body. In H. Matsui & K. Kobayashi (Eds.), Biomechanics VIII-B (pp. 1152–1159). Champaign, IL: Human Kinetics.




DOI: http://dx.doi.org/10.15366/rimcafd2019.73.002

Enlaces refback

  • No hay ningún enlace refback.