Núm. 61 (2016)
Área 17. OTRAS (Entrenamiento deportivo) / OTHERS (Sport training)

Entrenamiento en hipoxia intermitente y rendimiento ciclista en triatletas / Intermittent hypoxic training and cycling performance in triathletes

Publicado febrero 29, 2016


Los deportistas incorporan como complemento a su entrenamiento convencional, programas de entrenamiento en altitud para incrementar el rendimiento. El objetivo del estudio fue analizar los efectos sobre el umbral anaeróbico (Uan) producidos por un programa de entrenamiento en hipoxia intermitente (IHT) en triatletas. Participaron 18 triatletas divididos en un grupo de entrenamiento en hipoxia (GIHT: n=9; Edad: 26 ± 6.73 años; Talla 173.33 ± 5.94 cm; Peso: 66.38 ± 5.91 kg) y un grupo control (GC: n=9; Edad: 29.27 ± 6.84 años; Talla 174.89 ± 4.59 cm; Peso: 71.59 ± 6.81 Kg). Se aplicó un programa de IHT, complementario al entrenamiento habitual de 7 semanas al 15-14.5% de FiO2, 2 sesiones semanales de 60 minutos en cicloergómetro a la intensidad del Uan. Se llevó a cabo un test de umbrales lácticos previo y otro posterior al programa. El tratamiento propuesto produce un incremento en la potencia y el esfuerzo percibido en el Uan y disminuye la frecuencia cardiaca en el umbral aeróbico (Uae) y el Uan.

PALABRAS CLAVE: Entrenamiento en Hipoxia Intermitente, altitud simulada, Umbral anaeróbico, Triatlón



Athletes include altitude training as a complement to their conventional training to improve performance. The aim of the study was to analyze the effects on anaerobic threshold (AT) produced by an IHT program in triathletes. 18 male trained triathletes were divided into intermittent hypoxic training group (GIHT: n=9; age: 26±6.73 years, height 173.33±5.94 cm, weight: 66.38±5.91 kg) and control group (GC: n=9; age: 29.27±6.84 years, height 174.89±4.59 cm, weight: 71.59±6.81 kg). The IHT program consisted of two 60-min sessions per week at intensities over the AT and atmospheric conditions between 14.5 and 15% FiO2. Before and after the program, cycling performance in a lactate thresholds test was determined. The treatment caused an improvement in the power output and perceived exertion in AT and enhanced cardiac performance in the aerobic threshold and AT.

KEYWORDS: Intermittent Hypoxia Training, Simulated Altitude, Anaerobic Threshold, Triathlon.


Balsalobre-Fernández, C. Tejero-González, C.M., del Campo-Vecino, J. & Alonso-Curiel, D. (2014) Hypoxic exposure as a means of increasing sporting performance: fact or fiction? International Journal of Medicine and of Physical Activity and Sport. 14(53), 183-198.

Banister, E.W. (1991) Modeling elite athletic performance. In Physiological testing of elite athletes. Green, H., McDougal, J. y Wenger, H. Champaign, IL. Human Kinetics. 403-424.

Bonetti D.L, Hopkins W.G & Kilding A.E. (2006) High-intensity kayak performance after adaptation to intermittent hypoxia. International Journal of Sports Physiology and Performance, 1, 246-60.

Bonetti, D. L., Hopkins, W. G., Lowe, T. E., Boussana, A., & Kilding, A. E. (2009). Cycling performance following adaptation to two protocols of acutely intermittent hypoxia. International Journal of Sports Physiology and Performance, 4, 68-83.

Calbet, J. A., Boushel, R., Radegran, G., Sondergaard, H., Wagner, P. D. & Saltin, B. (2003). Why is VO2max after altitude acclimatization still reduced despite normalization of arterial O2 content? American Journal of Physiology, 284, 304-316. http://dx.doi.org/10.1152/ajpregu.00156.2002

Campbel, P., Katzmarzyk, P., Malina, R., Rao, D., Perusse, L. & Bouchard, C. (2001) Prediction of physical activity and physical work capacity (PVC150) in young adulthood from childhood y adolescence with consideration of parental measures. American Journal of Human Biology,12, 190-196. http://dx.doi.org/ 10.1002/1520-6300(200102/03)13:2<190::AID-AJHB1028>3.0.CO;2-N

Carig, N., Walsh, C., Martin, D., Woolford, S., Borudon, P., Stanef, T. & Savage, B. (2000). Protocols for the Physiological Assestment of High-Performance Track, Road and Mountain Cyclist. En A. S. Commision (Ed.), Physiological test for elite athletes. Gore, C. Champaing: Human Kinectis.

Casas, M., Casas, H. & Pagés, T. (2000). Intermittent hypobaric hypoxia induces altitude acclimatization and improves the lactate threshold. Aviation Space and Environment Medicine, 71, 125-130.

Consolazio, C. f., Nelson, R. A., Matoush, L. O. & Hansen, J. E. (1966). Energy metabolism at high altitude. Journal of Applied Physiology, 21 (4), 1732-1740.

Czuba, M., Waskiewicz, Z., Zajac, A., Poprzecki, S., Cholewa, J. & Roczniok, R. (2011) The effects of intermitent hypoxic training on aerobic capacity and endurance performance in cyclists. Journal of Sport Science and Medicine,10, 175-183.

Czuba, M., Zajac, A., Maszcyk, A., Roczniok, R., Poprzecki, S., Garbaciak, W. & Zajac, T. (2013) The effects of High Intensity Interval Training in Normobaric Hypoxia on Aerobic Capacity in Basketball Players. Journal of Human Kinetics, 39, 103-114. http://dx.doi.org/10.2478/hukin-2013-0073.

Dufour, S., Ponsot, E., Zoll, J., Doutreleau, S., Geny, B., Lampert, E. & Billat, V. (2006) Exercise training in normobaric hypoxia in endurance runners I. Improvement in aerobic performance capacity. Journal of Applied Physiology, 100, 1238-1248. http://dx.doi.org/10.1152/japplphysiol.00742.2005

Friedmann, B., Frese, F., Menold, E., Kauper, F., Jost, J. & Bartsch, P. (2005). Individual variation in the erythropoietic response to altitude training in elite junior swimmers. British Journal of Sports Medicine, 39, 148-153. http://dx.doi.org/10.1136/bjsm.2003.011387

Friedmann, B., Bauer, T., Menold, E. & Bartsch, P. (2004). Exercise with the intensity of the individual anaerobic threshold in acute hypoxia. Medicine and Science in Sports and Exercise, 36, 1737-1742. http://dx.doi.org/ 10.1249/01.MSS.0000142307.62181.37

Funes, D., Sarmiento, S., Rodríguez, F., Rivero, I., Rodríguez, R. & García-Manso, J. M. (2010). Respuesta de la frecuencia cardiaca a un esfuerzo aeróbico moderado en hipoxia aguda. Revista de Entrenamiento Deportivo, 24, 5-12.

Geiser, J., Vogt, M. & Billeter, R. (2001) Training high-living low: changes of aerobic performance and muscle structure with training at simulated altitude. International Journal of Sports Medicine, 22, 579-585. http://dx.doi.org/10.1055/s-2001-18521

Girard, O., Amann, M., Aughey, R., Billaut, F., Bishop, J., Bourdon, P., Buchheit, M., Chapman, R., Gore, C., Millet, G., Roach, G., Sargent, C., Saunders, U., Schmidt, W. & Schumacher, Y. (2013) Position statement—altitude training for improving team-sport players performance: current knowledge and unresolved issues. British Journal of Sports Medicine, 47, i8-i16. http://dx.doi.org/10.1136/bjsports-2013-093109

Gómez-Gallego, F., Santiago, C., González-Freire, M., Muniesa, C.A., Fernández Del Valle, M., Pérez, M. & Lucía, A. (2009) Endurance performance: genes or gene combinations? International Journal of Sports Medicine, 30, 66-72. http://dx.doi.org/10.1055/s-2008-1038677

Gore, C.J., Hahn, A.G., Aughey, R., Martin, D., Ashenden, M.J. & Clark, S.A. (2001) Live high-train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiologica Scandinavia, 173, 275-286. http://dx.doi.org/ 10.1046/j.1365-201X.2001.00906.x.

Hamlin, M.J., Marshall, H.C., Hellemans, J. & Ainslie, P.N. (2010) Effect of intermittent hypoxia on muscle and cerebral oxygenation during a 20-km time trial in elite athletes: a preliminary report. Applied Physiology of Nutrition and Metabolism, 35, 548-559. http://dx.doi.org/10.1139/H10-044.

Hamlin, M. J. & Hellemans, J. (2007). Effect of intermittent normobaric hypoxic exposure at rest on haematological, physiological, and performance parameters in multi-sport athletes. Journal of Sports Science, 25, 431-441. http://dx.doi.org/10.1080/02640410600718129.

Hendriksen, I.J. & Meeuwsen, T. (2003) The effect of intermittent training in hypobaric hypoxia on sea- level exercise: a cross-over study in humans. European Journal of Applied Physiology, 88, 396-403. http://dx.doi.org/10.1007/s00421-002-0708-z.

Hinckson, E. A., Hopkins, W. G., Downey, B. M. & Smith, T. B. (2006). The effect of intermittent hypoxic training via a hypoxic inhaler on physiological and performance measures in rowers: a pilot study. Journal of Science Medicine and Sport, 9, 177-180. http://dx.doi.org/10.1016/j.jsams.2006.01.001

Hinghofer-Szalkay, H. (2010) Intermittent hypoxic training: risks versus benefits. European Journal of Applied Physiology, 108, 417. http://dx.doi.org/10.1007/s00421-009-1274-4.

Katayama K, Sato K, Matsuo H, Ishida K, Iwasaki K & Miyamura M. (2004) Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. European Journal of Applied Physiology; 92, 75-83. http://dx.doi.org/10.1007/s00421-004-1054-0.

Katayama, K., Matsuo, H., Ishida, K., Mori, S. & Miyamura, M. (2003). Intermittent hypoxia improves endurance performance and submaximal exercise efficiency. High Altitude Medicine and Biology, 4, 291-304. http://dx.doi.org/ 10.1089/152702903769192250.

Kindermann, W., Simon, G. & Keul, J. (1979). The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. European Journal of Applied Physiology, 42, 25-34. http://dx.doi.org/10.1007/BF00421101

Levine, B. & Stray-Gundersen, J. (1997) "Living high-training low": effect of moderate-altitude acclimatization with low-altitude training on performance. Journal of Applied Physiology, 83, 102-112.

Levine, B.D. & Stray-Gundersen, J. (2005) Point: positive effects of intermittent hypoxia (live high:train low) on exercise performance are mediated primarily by augmented red cell volume. Journal of Applied Physiology, 99, 2053-2055. http://dx.doi.org/10.1152/japplphysiol.00877.2005.

Lundby, C., Nielsen, T. & Dela, F. (2005). The influence of intermittent altitude exposure to 4100 m on exercity and blood capacity and blood variables. Scandinavian Journal of Medicine and Science in Sport, 15, 182-187. http://dx.doi.org/ 10.1111/j.1600-0838.2004.405.x

MacDougall, J. D., Hicks, A. L., MacDonald, J. R., McKelvie, R. S., Green, H. J. & Smith, K. M. (1998) Muscle performance and enzymatic adaptations to sprint interval training. Journal of Applied Physiology, 84, 2138-2142.

Matveiev, L. P. (1985) Fundamentos del entrenamiento deportivo. Moscú: Raduga.

Meeuwsen, T., Hendriksen, I.J. y Holewijn, M. (2001) Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia. European Journal of Applied Physiology, 84, 283-290. http://dx.doi.org/10.1007/s004210000363.

Millet, G.P., Roels, B., Schmitt, L., Woorons, X. & Richalet, J.P. (2010) Combining hypoxic methods for peak performance. Sports Medicine, 40, 1-25. http://dx.doi.org/0112-1642/10/0001-0001

Millet, G.P., Faiss, R., Pialoux, V., Mounier, R. & Brugniaux, J. (2012) Hypobaric hypoxia induces / does not induce different responses than normobaric hypoxia. Journal of Applied Physiology, 112, 1795. http://dx.doi.org/10.1152/japplphysiol.00067.2012

Millet, G. P., Woorons, X. & Roels, B. (2009). Effects of intermittent hypoxia training on peak performance in elite athletes. In L. Xi & S. Serebrovskaya (Eds.), Intermittent Hypoxia (pp. 459-471). New York: Nova Science.

Millet, G., Faiss, R., Brocherie, F. & Girard, O. (2013) Hypoxic training and team sports: a challenge to traditional methods?. British Journal of Sports Medicine, 47, i6-i7. http://dx.doi.org/10.1136/bjsports-2013-092793.

Morton, J.P. & Cable, N.T. (2005) Effects of intermittent hypoxic training on aerobic y anaerobic performance. Ergonomics, 48, 1535-1546. http://dx.doi.org/10.1080/00140130500100959

Navarro, F. (1998) Entrenamiento de la Resistencia. 1998. Madrid: Gymnos.

Padilla, S., Mujika, I., Orbañanos, J. & Angulo, F. (2000) Exercise intensity during competition time trials in professional road cycling. Medicine and Science in Sports and Exercise, 32, 850-856. http://dx.doi.org/10.1097/00005768-200004000-00019

Padilla, S., Mujika, I., Orbañanos, J., Santisteban, J., Angulo, F. & Goirena, J. J. (2001) Exercise intensity and load during mass-start stage races in professionnal road cycling. Medicine and Science in Sports and Exercise, 33 796-802. http://dx.doi.org/10.1097/00005768-200105000-00019

Puype, J., Van Proeyen, K., Raymarkers, J.M., Delcicque, L. & Hespel, P. (2013) Sprint Interval Training in hypoxia stimulates glycolytic enzyme activities. Medicine and Science in Sport and Exercise, 45 (11), 2166-2174. http://dx.doi.org/10.1249/MSS.obo13e31829734ae

Ramos, D. J., Martínez, F., Esteban, P., Rubio, J., Mendizábal, S. & Jiménez, J. F. (2011) Modificaciones hematológicas producidas por un programa de exposición a hipoxia intermitente de ocho semanas de duración en ciclistas. Archivos de Medina del Deporte, 28, 257-264.

Rodríguez, F. A., Ventura, J. & Casas, M. (2000). Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. European Journal of Applied Physiology, 82, 170-177. http://dx.doi.org/10.1007/s004210050669

Rodríguez, F. A., Truijens, M., Townsend, N., Stray-Gundersen, J., Gore, J. & Levine, B. D. (2007). Performance of runners and swimmers after four weeks of intermittent hypobaric hypoxic exposure plus sea level training. Journal of Applied Physiology, 103, 1523-1535. http://dx.doi.org/10.1152/japplphysiol.01320.2006.

Roels, B., Millet, G.P., Marcoux, C.J., Coste, O., Bentley, D.J. & Candau, R.B. (2005) Effects of hypoxic interval training on cycling performance. Medicine and Science in Sports and Exercise, 37, 138-146. http://dx.doi.org/10.1249/01.MSS.0000150077.30672.88.

Roels, B., Bentley, D.J., Coste, O., Mercier, J. & Millet, G.P. (2007) Effects of intermittent hypoxic training on cycling performance in well-trained athletes. European Journal of Applied Physiology,101, 359-368. http://dx.doi.org/10.1007/S00421-007-0506-8.

Sanchis-Gomar, F., Martinez-Bello, V.E., Domenech, E., Nascimento, A.L., Pallardo, F.V., Gomez-Cabrera, M.C. & Vina, J. (2009) Effect of intermittent hypoxia on hematological parameters after recombinant human erythropoietin administration. European Journal of Applied Physiology,107, 429-436. http://dx.doi.org/10.1007/s00421-009-1141-3.

Skinner, J. & McLellan, T. (1980) The transition from aerobic to anaerobic metabolism. Research Quartely of Exercise in Sport, 51, 234-248. http://dx.doi.org/10.1080/02701367.1980.10609285.

Spina, R. J. (1999). Cardiovascular adaptations to endurance exercise training in older men and women. Exercise Sport Science Review, 27, 317-332. http://dx.doi.org/10.1249/00003677-199900270-00012.

Stray-Gundersen, J., Chapman, R. & Levine, B. (2001) "Living high-training low" altitude training improves sea level performance in male and female elite runners. Journal of Applied Physiology, 91, 1113-1120.

Svedenhag, J., Piehl-aulin, K., Skog, C. & Saltin, B. (1997). Increased left ventricular muscle mass after long-term altitude training in athletes. Acta Physiologica Scandinavia, 161, 63-70. http://dx.doi.org/10.1046/j.1365-201X.1997.00204.x

Tadibi, V., Dehnert, C., Menold, E. & Bartsch, P. (2007). Unchanged anaerobic and aerobic performance after short-term intermittent hypoxia. Medicine and Science in Sports and Exercise, 39, 858-864. http://dx.doi.org/10.1249/mss.0b013e31803349d9

Terrados, N., Melichna, J., Sylven, C. & Jansson, E. (1998) Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists. European Journal of Applied Physiology, 57, 203-209. http://dx.doi.org/10.1007/BF00640664.

Truijens, M.J,, Toussaint, H.M., Dow, J. & Levine, B.D. (2003) Effect of high-intensity hypoxic training on sea-level swimming performances. Journal of Applied Physiology, 94, 733-743. http://dx.doi.org/10.1152/japplphysiol.00079.2002.

Vallier, J.M., Chateaou, P. & Guezennec, C. (1996). Effects of physical training in a hypobaric chamber on the physical performance of competitive triathletes. European Journal of Applied Physiology,21, 73-80. http://dx.doi.org/10.1007/bf00334426.

Wilber, R.L. (2011) Application of altitude/hypoxic training by elite athletes. Journal of Human Sports and Exercise, 6, 1-12. http://dx.doi.org/10.4100/jhse.2011.62.07.

Wolfel, E. E., Groves, B. M. & Brooks, G. A. (1991). Oxygen transport during steady-state submaximal exercise in chronic hypoxia. Journal of Applied Physiology,70, 1129-1136.

Wood, M.R,, Dowson, M.N. & Hopkins, W.G. (2006) Running performance after adaptation to acutely intermittent hypoxia. European Journal of Applied Physiology, 6, 163-172. http://dx.doi.org/10.1080/17461390600571005.

Zoll, J., Ponsot, E., Dufour, S., Doutreleau, S., Ventura, R., Vogt, M. & Fluck, M. (2006) Exercise training in normobaric hypoxia in endurance runners III. Muscular adjustments of selected gene transcripts. Journal of Applied Physiology, 100, 1258-1266. http://dx.doi.org/10.1152/japplphysiol.00359.2005.