MONITORING OF A COMPETITIVE MICROCYCLE IN PROFESSIONAL WOMEN'S BASKETBALL THROUGH INERTIAL DEVICES

Reina, M.1, Mancha-Triguero, D.2 & Ibáñez, S. J.3

1 PhD of GOERD Group. Faculty of Sport Sciences. Cáceres. University of Extremadura (Spain) dmanchat@alumnos.unex.es
2 PhD of GOERD Group. Faculty of Sport Sciences. Cáceres. University of Extremadura (Spain) mreinarom@alumnos.unex.es
3 Full Professor of GOERD Group. Faculty of Sport Sciences. Cáceres. University of Extremadura (Spain) sibanez@unex.es

Spanish-English translator: Diane Schofield, schofielddiane@gmail.com

ACKNOWLEDGMENT

This research was partially subsidized by the Assistance to Research Groups (GR 21149) from the Regional Government of Extremadura (Department of Economy and Infrastructure); with the contribution of the European Union through FEDER and for the financial aid for predoctoral students granted by the University of Extremadura through its own research plan.

Código UNESCO / UNESCO code: 241010 (Fisiología Humana) / Exercise Physiology
Clasificación Consejo de Europa / Council of Europe classification: 17. Otras (Rendimiento Deportivo) / Other (Sport Performance)

Recibido 4 de mayo de 2020 Received May 4, 2020
Aceptado 29 de mayo de 2021 Accepted May 29, 2021

ABSTRACT

The implementation of effective load control strategies in training is essential to improve performance. The purpose of this study was to make a first approach to monitoring load with a professional women's basketball team. Ten players were equipped with an inertial device and a heart rate band during one microcycle. The load supported by the players during training and competition was analysed.
using External Load variables: (i) Distance performed, (ii) Distance performed at high intensity, (iii) PlayerLoad, (iv) Jumps, (v) Accelerations and Decelerations, (vi) Peak and average speed; and Internal Load variables: (i) Average and peak heart rate, (ii) Zones of % peak Heart Rate. Differences between training and competition were analysed using an ANOVA. The competition was the most demanding condition in all the variables studied except jumps per minute.

KEYWORDS: Basketball, monitoring, inertial devices, UWB, woman.

RESUMEN

La implementación de estrategias efectivas de control de carga en el entrenamiento es primordial para mejorar el rendimiento. El objetivo fue caracterizar las demandas soportadas durante un microciclo competitivo de un equipo profesional de baloncesto femenino y su interacción con la competición. Diez jugadoras se equiparon con un dispositivo inercial y una banda de frecuencia cardíaca. Se analizó la carga soportada por las jugadoras durante el entrenamiento y la competición mediante variables de Carga Externa: (i) Distancia recorrida, (ii) Distancia recorrida a alta intensidad, (iii) Playerload, (iv) Saltos, (v) Aceleraciones y Deceleraciones, y (vi) Velocidad máxima y media; y variables de Carga Interna: (i) Frecuencia cardíaca media y máxima, (ii) Zonas de % Frecuencia Cardíaca Máxima. Se analizaron diferencias entre el entrenamiento y la competición mediante un análisis ANOVA, observando que la competición fue la condición más exigente en todas las variables estudiadas a excepción de los saltos por minuto.

PALABRAS CLAVE: Baloncesto, monitorización, dispositivos inerciales, UWB, mujer.

INTRODUCTION

Load quantification is a widely used tool by physical trainers and coaches for monitoring and evaluating training and sports competition (Reina, Garcia-Rubio, Feu, & Ibañez, 2019). Load is quantified taking into account two main indicators. In the first place, the workload that the athletes support, considered as the set of psychological and biological demands (internal or real load) and, secondly, the load caused by training or competition activities (external or proposed load) (González-Badillo & Serna, 2002). These values will vary depending on the age and level of the player (Pion et al., 2015), the playing position or gender (Fort-Vanmeerhaeghe, Montalvo, Latinjak, & Unnithan, 2016), the moment in the season and the style of play (Miñano-Espín, Casais, Lago-Peñas, & Gómez-Ruano, 2017). Therefore, these types of results are essential for prescribing training individually, allowing it to be carried out with sufficient intensity to provide favourable adaptations while reducing the probability of injury (Gómez-Carmona, Bastida-Castillo, González-Custodio, Olcina, & Pino-Ortega, 2020).

At present, the use of inertial devices for monitoring and evaluating load is booming. Inertial devices, together with local positioning systems, are
composed of microsensors that continuously calculate the position, direction and speed of the moving player, without the need for satellite references (Gómez-Carmona et al., 2019). In turn, they are used in combination with global positioning systems (GPS) to determine the direction in which the player is moving (Chambers, Gabbett, Cole, & Beard, 2015). However, GPS systems generally present limitations in indoor environments. Ultra-wide band radio frequency (UWB) technology has begun to be used to locate this type of device indoors. The UWB system uses a reference frame formed by different antennas and determines the positioning (coordinates) in relation to the time of emission and reception of the signal (Bastida-Castillo et al., 2019).

In basketball, the implementation of effective load monitoring strategies in training is essential to promote physiological adaptations that improve performance (Reina, Mancha-Triguero, García-Santos, García-Rubio, & Ibáñez, 2019). These strategies will depend on a wide variety of factors that influence external demands and internal responses (Stojanović et al., 2018). In the context of women's basketball, Boles and Ferguson (2010) present women as a unique challenge for sports medicine, since they run a greater risk than men athletes of suffering some injuries, which are related to morphological and physiological differences. To solve this, it is important to investigate training and competition in this type of population because it has been worked on from men's data (Delextrat et al., 2015). Therefore, to optimise performance in women's basketball, it is necessary to respect the principles of sports training, such as individuality and specificity (Bompa & Buzzichelli, 2018). This is complicated, mainly due to the scant number of existing studies on women's basketball, where the information about high-performance athletes is limited and the samples are small (Reina, García-Rubio, & Ibáñez, 2020).

For this reason and together with the booming state of the use of the latest technology through UWB systems in indoor sports, the main objectives of the present study were, on the one hand, to monitor external and internal load during a microcycle of an elite women's basketball team, and on the other hand, to analyse the differences and similarities between training and sports competition.

METHOD

DESIGN

This research was framed within observational and cross-sectional studies, since no type of intervention was carried out, giving an ecological treatment to the development of training and matches (Ato, López & Benavente, 2013).

PARTICIPANTS

Ten players belonging to a high-level professional basketball team (Swann, Moran, & Piggott, 2015) in the highest Spanish and European national competition (age: 24±3 years; height: 195±1 cm; mass body weight: 93±16 kg; professional game experience: 5±2 years), were monitored during a microcycle.
The team held 4 training sessions, the first one for physical preparation and the next three for training, as well as a match over the weekend. All the players and coaches were informed about the research protocol that was developed based on the ethical provisions of the Declaration of Helsinki (2013), approved by the Bioethics Committee of the University (234/2019).

VARIABLES

Six variables of External Load were analysed (Table 1), Kinematics: (i) Distance covered, (ii) Distance covered at high intensity, (iii) Average and maximum speed; Neuromuscular: (iv) PlayerLoad™, (v) Jumps, (vi) Accelerations and Decelerations. And three variables of Internal Load (Table 2): (i) Average heart rate, (ii) Maximum heart rate, (iii) Work zones in % maximum heart rate.

<table>
<thead>
<tr>
<th>Table 1. Variables of External Load (EL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Kinematics</td>
</tr>
<tr>
<td>Distance covered</td>
</tr>
<tr>
<td>metres</td>
</tr>
<tr>
<td>Distance covered at high intensity</td>
</tr>
<tr>
<td>metres</td>
</tr>
<tr>
<td>Speed and Max Speed</td>
</tr>
<tr>
<td>Km/h</td>
</tr>
<tr>
<td>PlayerLoad™</td>
</tr>
<tr>
<td>u.a</td>
</tr>
<tr>
<td>Jump</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>Acelerations and Decelerations</td>
</tr>
<tr>
<td>n</td>
</tr>
</tbody>
</table>

Note: u.a (arbitrary units); n (number); km/h (kilometers per hour)

Table 1 shows the analyzed variables of External Load grouped according to the origin (Kinematic or Neuromuscular variables), it is accompanied by the definition and the measurement.
Table 2. Variables of Internal Load (IL)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definición</th>
<th>Medida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart Rate Average (HRAvg)</td>
<td>It is established with the arithmetic mean of the number of beats per minute in a specific period of time (a training task or the playing time in a match).</td>
<td>ppm</td>
</tr>
<tr>
<td>Heart Rate Maximum (HRMax)</td>
<td>It is established with the arithmetic mean of the maximum number of beats per minute.</td>
<td>ppm</td>
</tr>
<tr>
<td>Heart Rate Zones</td>
<td>are divided according to the percentage of maximum heart rate that each task or situation causes individually, being: Z1 (50-60%), Z2 (60-70%), Z3 (70-80%), Z4 (80-90%), Z5 (90-95%) y Z6 (>95%).</td>
<td>%</td>
</tr>
</tbody>
</table>

Table 2 shows the variables analyzed for Internal Load. It is also accompanied by the definition and measurement of each variable.

INSTRUMENTS

Each player was equipped with a GARMIN™ heart rate strap for internal load analysis (Kansas, United States) and with a WIMUPRO™ inertial device for external load analysis (RealTrack Systems, Almería, Spain) that was placed on the back of the upper torso in a specific vest made to measure and anatomically adjusted to the body (Figure 2 A and B). An antenna structure system was placed on the court through Ultra Wide-Band (UWB) technology (Serpiello et al., 2018) with the aim of creating a Local Positioning System (LPS) (Figure 2 C). In addition, the SVIVO™ software was used to automatically analyze all the data collected by the inertial device, sending it to a computer screen in real time. The WIMUPRO™ inertial device, the UWB antenna system and the SVIVO™ software come from the same company (RealTrack Systems, Almería, Spain).
PROCEDURE

Three training sessions lasting 2 hours each were carried out. All sessions began with 15 standardised minutes based on dynamic stretching, activation and running exercises. The players were allowed to drink water during recovery periods. All sessions were designed, directed and supervised by the technical staff; therefore, data recording was completely ecological. The training tasks performed in this microcycle were tasks of (i) Activation, (ii) Continuous counterattack in 3 vs. 2, (iii) Free throws, (iv) Small sided format 3 vs. 3, (v) Tactical situations in 5 vs. 0, and (vi) 5 vs. 5. In the competition, a real-time analysis was carried out for the four periods of play, excluding the rest intervals between quarters (Torres-Ronda, Ric, Llabres-Torres, de las Heras, & Schelling i del Alcazar, 2016). Only the players on the court were analysed. At the end of each training session and match, the coaching staff received an immediate report of the session in order to help them design and plan the next session based on the results obtained.

STATISTIC ANALYSIS

For the statistical analysis of training and competition load, all the data were normalised to the practice time (repetitions per minute) with two different values, cumulative and relative. First, a descriptive analysis of the quantitative variables analysed (mean, standard deviation and percentiles) of the demands of training and sports competition was carried out. These descriptive results were shown on bar graphs with the cumulative values of each of the variables and, in turn, the relative variables (per minute) were represented by points. Subsequently, a one-way ANOVA was used to identify the differences between training and competition based on physical demands (Newell, Aitchison, & Grant, 2014). Differences were also identified in more detail with the Bonferroni post-hoc test as a function of relative variables. Power and effect size were calculated. The effect size was calculated from Cohen’s d where an effect size is considered small 0.20-0.50, medium 0.50-0.80 and large 0.80-1 (Thalheimer & Cook, 2002). The software used was SPSS 24.0 (SPSS Inc., Chicago, IL, USA). Significance was established at <0.05 (Field, 2009; Newell et al., 2014).

RESULTS

First, descriptive results are presented based on training (Table 3) and competition (Table 4). In addition, to more accurately represent the results, the percentiles for each variable are shown in addition to the mean and standard deviation.
Table 3. Descriptive results during training

<table>
<thead>
<tr>
<th></th>
<th>Media ±DT</th>
<th>P.05</th>
<th>P.25</th>
<th>P.50</th>
<th>P.75</th>
<th>P.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>2531.95±962.78</td>
<td>1402.99</td>
<td>1774.21</td>
<td>2192.04</td>
<td>3378.12</td>
<td>4171.38</td>
</tr>
<tr>
<td>Distance/min</td>
<td>38.52±8.37</td>
<td>27.60</td>
<td>31.95</td>
<td>35.28</td>
<td>47.24</td>
<td>51.40</td>
</tr>
<tr>
<td>Distance Explosive</td>
<td>313.60±118.26</td>
<td>156.88</td>
<td>219.10</td>
<td>294.15</td>
<td>410.42</td>
<td>522.67</td>
</tr>
<tr>
<td>Distance Explosive/min</td>
<td>5.08±2.26</td>
<td>2.17</td>
<td>3.53</td>
<td>4.86</td>
<td>5.98</td>
<td>8.73</td>
</tr>
<tr>
<td>Acelerations</td>
<td>901.32±260.63</td>
<td>580.00</td>
<td>690.50</td>
<td>851.00</td>
<td>1128.50</td>
<td>1265.00</td>
</tr>
<tr>
<td>Decelerations</td>
<td>264.96±73.42</td>
<td>149.00</td>
<td>220.00</td>
<td>266.00</td>
<td>310.50</td>
<td>356.00</td>
</tr>
<tr>
<td>Acelerations/min</td>
<td>14.97±3.23</td>
<td>11.54</td>
<td>13.26</td>
<td>15.03</td>
<td>16.94</td>
<td>19.50</td>
</tr>
<tr>
<td>Decelerations/min</td>
<td>4.68±2.05</td>
<td>2.38</td>
<td>3.21</td>
<td>3.86</td>
<td>6.29</td>
<td>8.53</td>
</tr>
<tr>
<td>Speed Max</td>
<td>20.71±1.54</td>
<td>18.39</td>
<td>19.27</td>
<td>20.69</td>
<td>21.84</td>
<td>23.05</td>
</tr>
<tr>
<td>Speed Avg</td>
<td>4.40±0.20</td>
<td>4.11</td>
<td>4.22</td>
<td>4.44</td>
<td>4.56</td>
<td>4.81</td>
</tr>
<tr>
<td>Jumps</td>
<td>103.39±45.97</td>
<td>50.00</td>
<td>74.50</td>
<td>94.00</td>
<td>115.00</td>
<td>180.00</td>
</tr>
<tr>
<td>Jumps/min</td>
<td>1.62±0.60</td>
<td>0.82</td>
<td>1.13</td>
<td>1.51</td>
<td>2.06</td>
<td>2.74</td>
</tr>
<tr>
<td>Player Load</td>
<td>40.94±14.64</td>
<td>24.07</td>
<td>31.89</td>
<td>35.07</td>
<td>51.62</td>
<td>68.31</td>
</tr>
<tr>
<td>Player Load/min</td>
<td>0.63±0.15</td>
<td>0.38</td>
<td>0.52</td>
<td>0.67</td>
<td>0.74</td>
<td>0.84</td>
</tr>
</tbody>
</table>

EL: External Load; **IL:** Internal Load; **HR Max:** Heart Rate Maximum, **HR Avg:** Heart Rate Average

Table 4. Descriptive results during competition

<table>
<thead>
<tr>
<th></th>
<th>Media ±DT</th>
<th>P.05</th>
<th>P.25</th>
<th>P.50</th>
<th>P.75</th>
<th>P.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance</td>
<td>3531.56±310.5</td>
<td>2938.0</td>
<td>3296.6</td>
<td>3551.1</td>
<td>3790.0</td>
<td>3931.3</td>
</tr>
<tr>
<td>Distance/min</td>
<td>69.15±2.95</td>
<td>63.50</td>
<td>66.51</td>
<td>69.34</td>
<td>71.64</td>
<td>73.12</td>
</tr>
<tr>
<td>Distance Explosive</td>
<td>458.68±69.92</td>
<td>327.10</td>
<td>430.94</td>
<td>464.87</td>
<td>498.57</td>
<td>568.16</td>
</tr>
<tr>
<td>Distance Explosive/min</td>
<td>8.95±0.98</td>
<td>7.07</td>
<td>8.78</td>
<td>8.92</td>
<td>9.69</td>
<td>10.45</td>
</tr>
<tr>
<td>Acelerations</td>
<td>944.67±81.40</td>
<td>791.00</td>
<td>916.00</td>
<td>942.84</td>
<td>964.00</td>
<td>1117.00</td>
</tr>
<tr>
<td>Decelerations</td>
<td>940.89±80.13</td>
<td>786.00</td>
<td>915.00</td>
<td>941.45</td>
<td>965.00</td>
<td>1107.00</td>
</tr>
<tr>
<td>Acelerations/min</td>
<td>18.51±1.07</td>
<td>16.61</td>
<td>18.06</td>
<td>18.47</td>
<td>18.69</td>
<td>20.55</td>
</tr>
<tr>
<td>Decelerations/min</td>
<td>18.44±1.07</td>
<td>16.50</td>
<td>17.93</td>
<td>18.42</td>
<td>18.60</td>
<td>20.37</td>
</tr>
<tr>
<td>Speed Max</td>
<td>19.35±1.60</td>
<td>17.12</td>
<td>18.44</td>
<td>18.83</td>
<td>20.16</td>
<td>22.49</td>
</tr>
<tr>
<td>Speed Avg</td>
<td>5.16±0.16</td>
<td>4.85</td>
<td>5.16</td>
<td>5.18</td>
<td>5.25</td>
<td>5.38</td>
</tr>
<tr>
<td>Jumps</td>
<td>33.89±16.00</td>
<td>18.00</td>
<td>20.00</td>
<td>33.95</td>
<td>41.00</td>
<td>70.00</td>
</tr>
<tr>
<td>Jumps/min</td>
<td>0.67±0.33</td>
<td>0.34</td>
<td>0.39</td>
<td>0.66</td>
<td>0.79</td>
<td>1.44</td>
</tr>
<tr>
<td>Player Load</td>
<td>58.85±9.54</td>
<td>37.88</td>
<td>57.06</td>
<td>59.09</td>
<td>64.75</td>
<td>70.97</td>
</tr>
<tr>
<td>Player Load/min</td>
<td>1.15±0.15</td>
<td>0.82</td>
<td>1.10</td>
<td>1.17</td>
<td>1.26</td>
<td>1.33</td>
</tr>
</tbody>
</table>

EL: External Load; **IL:** Internal Load; **HR Max:** Heart Rate Maximum, **HR Avg:** Heart Rate Average
Tables 3 and 4 together show how, during training, the variation between the percentiles is greater than that of the competition, where the demands are equal. In average values, the results obtained in competition are greater than those of training, with the exception of the number of jumps. However, if the percentiles are observed (see supplementary material at the end of the text), specifically the maximum values ($p.95$), during training, higher accumulated values than those of the competition are obtained in terms of distance travelled, explosive distance travelled, accelerations and number of jumps, as well as higher speed executions. The same is not evident in the variables per minute, which imply greater intensity, where higher values were recorded in the competition.

Next is a visual depiction of how all the variables analysed evolved during the week according to the training session and match. Regarding the internal load variables, the players responded with a higher % of maximum heart rate during the competition (Figure 4, A) where the activity also demands work of greater intensity (Figure 4, B).

Figure 4. Internal Load Demands during training and competition.

Figure 5 shows the results pertaining to the External Load variables during the competitive microcycle and the results of the competition.
Evolution of Distance covered

Evolution of Distance covered at high intensity

Evolution of Load Monitoring (PL)

Evolution of number of Jumps

Evolution of number of ACC and DEC

Evolution of Speed

Figure 5. External Load Demands during training and competition. Significant differences (p <0.05) with Training -3 = (-3); with Training -2 = (-2); with Training -1 = (-1); with the Competition = (C)
Regarding external load variables, it was found that the highest number of metres travelled was recorded in session number two, however, the greatest distance and explosive distance travelled per minute corresponded to the competition (Figure 5, A and B). The loading volume (PL) was equal to the game in session two, but the intensity increased progressively, the game being more intense (Figure 5, C). In the case of the number of jumps, the opposite occurred, with the lowest number during competition compared to training (Figure 5, D). During training, more accelerations take place than decelerations, however, in competition they are equal (Figure 5, E). Regarding speed, average speed increased during the competition, although the maximum speed reached was lower (Figure 5, F).

DISCUSSION

The objectives of the present study were to monitor external and internal load during a competitive microcycle in a top-level team. After monitoring the load during training sessions and the study game, significant differences were observed between both conditions. A much higher intensity was found during the match, except for the number of jumps and the maximum speed reached. Competition has been shown to be the most demanding condition in women's basketball (Reina, Mancha, & Ibáñez, 2017). However, players should experience competition-like physical demands during training (Montgomery, Pyne, & Minahan, 2010). Work has been carried out during training oriented to the volume that covers competitive demands, however, the most intense actions carried out during the competition (variables per minute) are not reproduced during training. Therefore, coaches must be aware of them and be able to reproduce them (Conte et al., 2015; Matthew & Delextrat, 2009; Tee, Lambert, & Coopoo, 2016; Torres-Ronda, Ric, Llabres-Torres, de las Heras, & Schelling i del Alcazar, 2016), as well as knowing if the training load has been lower or higher than the reference loads of the actual game (Reina, Mancha-Triguero, & Ibáñez, 2017).

Regarding internal load, work values were found at 79.95% of the maximum heart rate in competition, compared to 66.09% during training. Therefore, the competition caused higher values of internal load, showing a longer working time in zones 5 and 6 during the competition. Various authors have established work at around 82.4-92.5% of maximum heart rate during sports competition (Reina, Garcia-Rubio, et al., 2019; Reina, Mancha, et al., 2017; Sánchez-Sánchez 2007), which is higher than that found in this study. This may be because internal load values decrease as the competitive level increases (Abdelkrim et al., 2010) and, in this case, the analysed team competes at the highest competitive level. On the other hand, during training the general intensity is lower (Montgomery et al. (2010). The most similar loads to competition occur in the 5 vs. 5 training tasks; however, the highest values are always recorded in competition (Reina, Mancha-Triguero, et al., 2017). This may be due to the fact that, during training, the tasks do not keep the players at maximum intensity with the same workloads for the same length of time as in the real game. Therefore, other periods of high intensity training should be provoked (Svilar, Castellano, & Jukic, 2019).
Regarding external load, lower values were found in all the variables analysed in training compared to the competition, except jumps and maximum speed throughout the week and the values of absolute PL and distance travelled in training -2. Contrary to internal loading, higher-level players are able to perform more actions at higher intensity during competition compared to players of a lower competitive level (Ferioli et al., 2020). In the case of the number of jumps, however, the inclusion of tasks with specific objectives, such as shooting or bouncing exercises, can cause a greater use of them during training (Reina, García-Rubio, Antúnez, Courel-Ibáñez, & Ibáñez, 2019).

During competition, the players covered 28.31% greater distance compared to training. This was equal to competition in the number of metres covered in training -2; however, the metres covered per minute and the explosive distance were higher during the match. In PL values, the same occurred as with distance, a similar volume was reached in training -2 but the intensity in the match was much higher than the rest of the weekly training sessions. Both variables are, therefore, highly related. In the case of acceleration work, more accelerations than decelerations were found during training, however, in competition these values were equal. There is therefore a deficit in deceleration work during training. Something similar happened with running speed, where higher values of average speed were found in competition, but maximum speeds were reached during training. This higher intensity during training sessions may be due to non-stop training matches for fouls, free throws, etc. which causes variables related to intensity to increase (Svilar et al., 2019).

In accordance with previous studies, the design of tasks in a small-sided format, such as 3v3 on the whole court, increases the intensity of training as each player performs more actions related to the game by decreasing their number on the court (Castagna, Impellizzeri, Chaouachi, Ben Abdelkrim, & Manzi, 2011; O’Grady, Fox, Dalbo, & Scanlan, 2020; Torres-Ronda, Ric, Llabres-Torres, de las Heras, & i del Alcazar, 2016). Therefore, training tasks can elicit higher speed responses and acceleration / deceleration than competition. This may be due to the objective and design of tasks with a smaller number of players since the increase in the number of players practicing reduces these values, due to the increase in density (Gómez-Carmona, Gamonales, Pino-Ortega, & Ibáñez, 2018).

It has been found, in a general way, that the training sessions do not meet the demands of the match. The design of the tasks is key when it comes to explaining these differences. There are two different types of rest: intra-set and inter-set pauses. That is, the breaks that the exercise design allows within each repetition of the task (intra-set); and the breaks that the trainer allows between repetitions of the same exercise (Schelling & Torres, 2016). All these pauses determine the load and intensity of the exercises. Competition has a chaotic and unpredictable nature (García-Rubio, Gómez, Cañadas, & Ibáñez, 2015) and this causes physical and physiological responses of greater stress than a simulated context can do, such as during training (Taberner, Allen, & Cohen, 2019). Although it has been established that modified games increase these internal and external load demands while maintaining the specific technical and
tactical characteristics of the competition (Halouani, Chtourou, Dellal, Chaouachi, & Chamari, 2017; Ibáñez, Pérez-Goye, García-Rubio, & Courel-Ibáñez, 2020), these are not enough to match competitive demands (Aguiar, Botelho, Lago, Maças, & Sampaio, 2012). However, the incorporation of tasks based on high intensity intermittent training (HIIT) can make players meet the specific needs of the competition when exposed to situations as intense as those of matches (Castagna et al., 2011). Therefore, taking into account the worst possible scenarios caused by real competition, these can be transferred to training through specifically designed tasks (Alonso et al., 2020), achieving a better adaptation by the players.

CONCLUSIONS

The results show that the systematic monitoring of external and internal load demands during training and competition generates information about the processes that are being carried out, in order to improve training strategies, specific tasks and, finally, performance in competition. It has been found that the internal demands were higher in competition, mainly due to the stress that it generates. Regarding external demands, it has been shown that during the training scenarios they are similar to the competition in the case of total variables (volume). The same did not occur with variables per minute (intensity), where the competition was more demanding. For all these reasons, it is necessary to make decisions and design different strategies of action with caution, respecting a series of principles, and the continuous evaluation of the load in training and competition allows this to be done in an objective and individualised way. Task design work is essential, with the aim of constructing tasks that demand more internal load, more deceleration work or cause higher PlayerLoad values in the players.

PRACTICAL APPLICATIONS

The research results suggest the need for new strategies to increase the intensity of training compared to matches. Some of these may be: i) Modification of the rules of the 5 vs. 5 matches in training (Svilar et al., 2019). For example, eliminating the use of free throws or time-outs modifies the physical load (Moreira, McGuigan, Arruda, Freitas, & Aoki, 2012), due to an increase in the work-rest ratio. Real game situations can also be used, e.g., 5 vs. 5 in which the time is not stopped, proposing that the ball be put into play quickly after the different infringements, thus causing an increase in the physiological response and fatigue (Vazquez-Guerrero, Reche, Cos, Casamichana, & Sampaio, 2018); ii) Use of modified games, maintaining the size of the playing field, but reducing the number of players. It has been shown that 2 vs. 2 in a full court is the situation that most closely resembles the demands of competition (Castagna et al., 2011); iii) Inclusion of specific tasks to achieve the intensity of competition. The incorporation of the HIIT methodology in the design of tasks that incorporate sport-specific movements and skills, such as bouncing and movement circuits, will allow increasing the intensity of the exercise (Stone & Kilding, 2009).
The main results of this study identified differences between training and sports competition. These differences must be corrected to achieve higher performance through optimal training processes. For this, a series of guidelines was established to apply in training:

- It is necessary that, throughout training, the players work in higher maximum heart rate zones; specifically, around 30% of the time at intensities greater than 90% of maximum heart rate.

- During the week in certain sessions there is an external load volume similar to that of the game, however, the same does not happen in intensity levels (actions per minute). The intensity of the training should be increased by proposing tasks that cause the players to travel more metres per minute continuously and not in isolation, since higher values of maximum speed were found in training.

- Regarding jumping, a very characteristic action in this sport, it is proposed to analyse and break down the tasks used during training so that they do not imply an extra demand for the players, since it was found that training required more jumps than the competition.

- Accelerations and decelerations are also very characteristic actions of the sport that must be trained in a specific way. More accelerations were found compared to decelerations, yet in competition the number of decelerations increased to equal the number of accelerations. Therefore, it is important to equalise both actions during training, focusing on decelerations since it is necessary mainly for the prevention of injuries.

Continuous monitoring and evaluation of the load borne by the players during their respective training sessions and matches can be of vital importance when it comes to physical conditioning programmes with the aim of optimising performance in women basketball players.

LIMITATIONS

The study sample was from a single high-competition team, so generalisation of the results, although in line with most of the studies published to date, is difficult and should be considered with caution. However, the purpose of this study was not to make generalisations about basketball training in women, much less in a sample as specific as the present one. The research sought to show the importance of monitoring and controlling training to individualise the needs and specificities of that particular team, knowing the process can be modified and adapted to the particular needs of that context.
REFERENCES

Fort-Vanmeervhaeghe, A., Montalvo, A., Latinjak, A., & Unnithan, V. (2016). Physical characteristics of elite adolescent female basketball players and

Número de citas totales / Total references: 45 (100%)
Número de citas propias de la revista / Journal's own references: 0 (0.00%)

Rev.int.med.cienc.act.fis.deporte - vol. 22 - número 87 - ISSN: 1577-0354
Material complementario. Representación gráfica de percentiles durante el entrenamiento y la competición deportiva