Work- and age-related changes in an Iron Age horse skeleton from Danebury hillfort, Hampshire

ROBIN BENDREY
Department of Archaeology, Faculty of Social Sciences, University of Winchester, West Hill, Winchester, Hampshire, SO22 4NR, UK.
e-mail: robin.bendrey@winchester.ac.uk

(Received November 4, 2005; Revised April 20, 2007; Accepted May 22, 2007)

ABSTRACT: Pathological changes and other alterations in an Iron Age horse skeleton from Danebury, Hampshire, England are described and used to interpret the possible use of the animal. The low level of pathology present in what is a relatively old animal (c.16-18 years of age at death) suggests that the horse was not heavily used, perhaps employed to pull a light cart or chariot or occasional riding. The presence of a horizontal fissure in the caudal epiphysis of the thoracic vertebra 14 may indicate that it was used for riding, possibly with either a pad saddle or bareback.

KEYWORDS: HORSE, PALAEOPATHOLOGY, IRON AGE, DANEBURY, RIDING, TRACTION

RESUMEN: El trabajo aborda los cambios patológicos y otro tipo de alteraciones detectados en un esqueleto de caballo de la Edad del Hierro recuperado en Danebury, Hampshire, Inglaterra y utiliza ello para interpretar los posibles usos del animal. El limitado grado de patología existente en lo que parece ser un animal bastante viejo (entre 16-18 años de edad) sugiere que el caballo no fue utilizado de forma intensiva siendo su misión, posiblemente, la de tirar de un carro o carroza ligera o, incluso, ser montado de forma ocasional. La presencia de una fisura horizontal en la epífisis caudal de la vértebra torácica nº 14 podría indicar que se utilizó para la monta bien a pelo o con silla de montar.

PALABRAS CLAVE: CABALLO, PALEOPATOLOGÍA, EDAD DEL HIERRO, DANEBURY, MONTA, TRACCIÓN
INTRODUCTION

This article describes pathological changes and other alterations in a horse skeleton from Danebury, an Iron Age hillfort in Hampshire, England (Cunliffe, 2003). The skeleton under study derives from pit 562 (context 3) and is dated to the middle phase of activity at the site, c.310-270 BC (Cunliffe, 2003). The site produced a range of animal bone deposits from disused grain storage pits interpreted as evidence for ritual behaviour, of which this skeleton is one such example (Grant, 1984). Other classes of specially deposited material identified at Danebury consist of groups of pots, iron implements, horse and vehicle trappings, layers of burnt grain and human remains (Cunliffe, 2003).

THE SKELETON

The skeleton is that of an adult male horse, based on the presence of well-developed canines and the shape of the pelvis (Sisson & Grossman, 1966). Analysis of lower incisor wear indicates an age of around 16 to 18 years at death (Cornevin & Lesbre, 1894). The cranium of the animal is missing. There is an empty bag in the storage boxes containing the skeleton labelled as containing the cranium, and it is assumed that this part has been removed post-excavation and that the skeleton was originally complete.

The mandible

For the past forty years, research into bit wear in horses – to identify that animals were bitted – has focussed on changes causing bevelling on the lower second premolar (P2) anterior corner (e.g. Bökonyi, 1968; Clutton-Brock, 1974). Bit wear analyses were developed and refined by Anthony and Brown (Anthony & Brown, 1991, 1989, 2003; Brown & Anthony, 1998). They define bit wear as the damage that occurs on the occlusal surface of the second premolars when a horse chews the bit, and developed a macroscopic methodology for recording the presence of bevelling on the lower second premolars (Brown & Anthony, 1998). This method has been criticised, as abnormal occlusion with the upper tooth can cause a bevel on the P2 anterior corner (Levine et al., 2002: 69 and figure 17; Benecke & von den Driesch, 2003: 79; Olsen, 2003: 101). Qualitative changes to the occlusal surface can also be used as supportive evidence for bitting (e.g. Albarella et al., 1997: 43; Olsen, 2006: 254-255), but the use of a bevel measurement alone as evidence for bitting without comparing the lower second premolar (P2) against the occluding lower second premolar (P2) is insecure (Bendrey, forthcoming).

The bevel measurement method cannot be used on the Danebury horse, due to the absence of the upper dentition and the problems set out above. In addition, there are no macroscopic qualitative changes, such as the absence or reduction of the «Greaves’ Effect», the natural process whereby the softer dentine is worn down faster than the harder enamel, leaving raised enamel ridges on the occlusal surface (contact with a metal bit causes both the enamel and dentine to wear down to a similar level) (see Olsen, 2006: 254-255). There is, however, evidence for bitting damage to the lower second premolars (P2s) in the form of a band of enamel exposed on the anterior edge of each tooth (Figure 1). Bendrey (in press) argues that such bands of enamel exposure on the ‘front’, or anterior, edge of equid lower second premolars derive from a bit coming into contact with the front edge of the tooth and wearing away a strip of cementum to expose the enamel beneath (more severe bitting damage can also expose areas of dentine). Not all enamel exposure on the anterior border of P2s can be considered as evidence for bitting, as this is a relatively exposed site and other forms of damage can occur. Bendrey (in press) suggests that to interpret such enamel exposure on the anterior edge of P2s as evidence for bitting the following criteria must be met: the height of this exposure should be in excess of 5mm (measured from the occlusal surface towards the mandible); anterior exposure must not be similar to, or less than, any exposure on the lingual or buccal sides; the form of exposure should be an approximately parallel-sided band. All these criteria are met for the specimens from pit 562, for which the height of the anterior enamel exposure (measured from the occlusal surface towards the mandible) is 6.8 mm for the left LP2 and 9.9mm for the right. The presence of bitting damage on the P2s indicates that the animal was harnessed with a bit, and was therefore used for either riding or driving.
The hip and shoulder

There is slight lipping of the rim of the left and right acetabuli. Although shoulder and hip injuries may be characteristic of traction (Levine *et al.*, 2000), the slight changes observed to the acetabuli are not strong evidence for traction compared to, for example, the eburnation that is sometimes seen in cattle acetabuli (e.g. Groot, 2005), and may be related to other factors, such as age. Indeed, comparable changes have been observed by the author on Przewalski’s horse skeletons [in the National Museum, Prague; the collection studied in Bendrey (2007)] that have not been worked.

The fore-limbs

Bony changes in the fore-limbs are restricted to the lower leg bones (the metacarpals and phalanges). New bone deposition has bridged the interosseus border between metacarpal iii and the medial and lateral accessory metacarpals in the right fore-limb (Figure 2); as it has between the metacarpal iii and the medial accessory metacarpals in the left fore-limb (the other metapodials in this horse remain unattached). The ossification of the interosseous lig-

![Figure 1](image1.png)

**FIGURE 1**
Anterior view of left lower second premolar ($P_2$) exhibiting anterior enamel exposure suggestive of biting damage (above), with annotated drawing (below) [see Bendrey (in press) for discussion of biting damage].

![Figure 2](image2.png)

**FIGURE 2**
Proliferative new bone formation has bridged the interosseus border between the right metacarpal ii and metacarpal iii (lateral view).

Archaeofauna 16 (2007): 73-84
ments between the metapodials in horses, a condition known as splints, occurs as a response to the repeated movements of the bones, causing damage to the connecting ligaments and periosteum of the bones, ultimately leading to their ossification (Bertone, 2002). Splints is known to be, in part, age-related, and that in the metacarpals fusion progresses normally with ageing, although as stated it may also be the result of bone disease (Bertone, 2002). The expression of the ossification of the interosseous ligaments in this animal is consistent with the pattern identified in a population of unworked Pzrewalski’s horses (Bendrey, 2007). The bony change is known to manifest itself earlier in the fore-limbs and the medial accessory metapodials.

The anterior proximal phalanges exhibit bilateral osteophytosis of the distal abaxial borders in the insertion of the collateral ligaments of the interphalangeal joint (Figure 3). The identification of these lesions in the fossil equid record indicates that this is a naturally occurring condition (Roeoey, 1997).

The hind-limbs

Beyond the slight remodelling of the acetabuli noted above, changes in the hind-limbs are also recorded to the hock joints. In the left hind-limb the central, third, and first and second tarsals are ankylosed; and in the right the central and third tarsal are ankylosed and there is also some new bone formation on the fourth, and first and second tarsals. The articular surfaces are unaffected, and there is deposition of osteophytes around the articulations of the tarsals and the proximal metatarsals (Figure 4). This is a case of bone spavin [see Sullins (2002) for discussion of different forms of spavin]. Bone spavin is an osteoarthritis and periostitis that involves the distal intertarsal, tarsometatarsal, and occasionally the proximal intertarsal joints (Sullins, 2002: 931). A number of possible, probably inter-related, causes of spavin include hereditary factors that affect conformation, severe concussion (due to faulty conformation, faulty

FIGURE 3
Anterior proximal phalanx exhibiting bilateral osteophytosis of the distal abaxial borders in the insertion of the collateral ligaments of the interphalangeal joint (arrowed).
shoeing, heavy work, or working on hard surfaces), and rotation of the lower limb from the hock downwards (Baker & Brothwell, 1980: 118).

There are also small areas of abnormal bone remodelling on the medial aspect of the anterior part of each proximal metatarsal (Figure 4). These areas extend some 3.5 cm in length distally, and do not reach the proximal articular surface. The symmetrical nature of these changes would argue against a fracture, or other traumatic injury, as a cause. A diagnosis of the possible cause/s of this bony change has not been possible.

The spinal column

A number of pathological changes are recorded in the vertebral column. Tables 1 and 2 compare abnormalities of thoracic vertebrae 11-19 of the Danebury horse with an Iron Age skeleton from Blewburton Hill, Oxfordshire examined by the author (Bendrey et al., forthcoming), Early Iron Age horses from Ak-Alakha 5 (Altai) and Liso-vichi (Ukraine), modern free-living Exmoor ponies and medieval horses from Ak-Alakha 1 (Altai) published by Levine (2004, 2005). The four Scytho-Siberian horse skeletons from Ak-Alakha 5 (Altai), date to the fifth to third century BC, and the contexts of these burials suggest that they were riding animals (Levine, 2005).

Spondylotic spurs of new bone are recorded at the cranial edge of the ventral surface of the centra, adjacent to the intervertebral space, on thoracic vertebrae 13 and 14 (Figure 5). Lumbar vertebrae 2 and 3 also exhibit slight deposition of spondylotic spurs of new bone at the cranial edge of the ventral surface of the centra, adjacent to the intervertebral space. Deposition of spondylotic spurs of new bone on the ventral and lateral surfaces of the vertebral bodies adjacent to the intervertebral space (Table 2, lesion 1) and impinging or overriding spinous processes (Table 2, lesion 2) are known to be connected with natural ageing processes, congenital defects and are thought to be linked to riding (Levine et al., 2000). Comparison with the Exmoor pony skeletons described by Levine (2004) suggests that the presence of lesion 1 in the Danebury animal may be a naturally occurring abnormality.

Lumbar vertebrae 4 and 5 are fused together at the left transverse processes (the right side are missing): the fused processes appear to have also
TABLE 1
Description of abnormalities of thoracic vertebrae 11-18 of Iron Age southern British horses: comparison of Iron Age horse from Danebury, Hampshire with Iron Age horse from Blewburton Hill, Oxfordshire.

<table>
<thead>
<tr>
<th>Lesion 1)</th>
<th>Danebury</th>
<th>Blewburton Hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposition of spondyloptic spurs of new bone on the ventral and lateral surfaces of the vertebral bodies adjacent to the intervertebral space</td>
<td>T13 and 14, slightly developed (see Figure 5)</td>
<td>Not present</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesion 2)</th>
<th>Danebury</th>
<th>Blewburton Hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impinging or overriding spinous processes</td>
<td>Unclear due to damaged bone</td>
<td>Not present</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesion 3)</th>
<th>Danebury</th>
<th>Blewburton Hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal fissures through the caudal epiphysis</td>
<td>T14 (see Figure 7)</td>
<td>Not present</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lesion 4)</th>
<th>Danebury</th>
<th>Blewburton Hill</th>
</tr>
</thead>
<tbody>
<tr>
<td>Periarticular osteophytes</td>
<td>Not present</td>
<td>Not present</td>
</tr>
</tbody>
</table>

FIGURE 6
Fusion of lumbar vertebra 6 and sacrum at the lateral joints and lateral edges of the centra (arrowed).
broken and subsequently re-united during the healing process. In a study of ankylosing lesions in the spine of 245 equid skeletons, Stecher & Goss (1961) identified that the lateral joints of lumbar vertebrae transverse processes were only fused in domestic equids and not wild ones, suggesting that it is related to increased stresses on the skeleton associated with riding or traction, although it may be partially related to age (Rackham, 1995).

Lumbar vertebra 6 is fused to the sacrum at the lateral joints and the lateral edges of the centra (Figure 6). In their study, Stecher & Goss (1961) state:

Ankylosis, fusion, or significant spur formation was not seen between the last lumbar vertebra and the sacrum ... significant flexion of the lower spine is possible only between the last lumbar vertebra and the sacrum. This flexion is limited but it is important and it is never impaired. On the other hand, flexion of the lumbar spine is restricted and further stabilization by fusion of the fifth and sixth lumbar vertebrae seems to be advantageous.

The extent to which the ankylosis of the lumbar vertebra 6 and sacrum is age- or work-related, or is a congenital abnormality, is uncertain. The absence of new bone formation around the ankylosed joint suggests that it may be the latter.

A horizontal fissure through the caudal epiphysis was noted on thoracic vertebra 14 (Figure 7). These lesions only occur in the Early Iron Age horses and not the free-living Exmoor ponies (Table 2) and are therefore considered as work-related changes (Levine et al., 2000; Levine, 2004).

DISCUSSION

AGE-RELATED CHANGES

Several of the observed changes can be considered as age-related. The pattern of ossification of the accessory metapodials to the cannon bones in the lower limbs of the animal is comparable with that recorded for a sample of unworked Przewalski’s horses: in that the condition is more pronounced in the fore-limbs than the hind-limbs and also in the medial metapodials rather than the lateral metapodials (this is thought to be related to how the weight of the animal acts through the legs) (Bendrey, 2007). Also, the bilateral osteophyrosis of the proximal phalanges and the lipping of the acetabula rims are also noted in the same sample of Przewalski’s horses; although all these conditions may also be exacerbated by work.

In the Danebury horse, the deposition of slight spondylotic spurs of new bone on the ventral surfaces adjacent to the intervertebral space of the thoracic vertebrae 13 and 14 (Figure 5; Table 1, lesion 1) may be an age-related change. This animal is reasonably old, aged c.16-18 years at death, and this pathology is absent from the younger horse from Blewburton Hill, aged c.6 years at death. Comparison with data from the free-living Exmoor ponies published by Levine also supports this (Table 2), in that this change is absent in the younger animal (12 years old) but present in the older (27 years old).

WORK-RELATED CHANGES

A number of features in the skeleton can be interpreted as work-related changes. The identifi-
<table>
<thead>
<tr>
<th>Horse no.</th>
<th>Ak-Alakha 5 (Altai)</th>
<th>Lisovichi (Ukraine)</th>
<th>Ak-Alakha 1 (Altai)</th>
<th>Exmoor ponies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>1 16+ Male</td>
<td>1 11½ Male (probable gelding)</td>
<td>1 11 years Male</td>
<td>2 12 Female</td>
</tr>
<tr>
<td>Sex</td>
<td>2 10-15 Male</td>
<td>2 10½ years Male</td>
<td>2 10½ years Male</td>
<td>27 Female</td>
</tr>
<tr>
<td>No. of TV</td>
<td>3 18</td>
<td>4 18</td>
<td>4 18</td>
<td>18 18</td>
</tr>
<tr>
<td>Lesion 1</td>
<td>T11 to 18</td>
<td>T10 to 18; T13 to 18 most strongly developed</td>
<td>T14, small ventral spondyloitic spur</td>
<td>Not present</td>
</tr>
<tr>
<td>Spinal column</td>
<td>Increasing from T11 to T14 (11 &amp; 12 caudal; 13 &amp; 14 cranial + caudal)</td>
<td>T13 to 15 most strongly developed, but extends to T17</td>
<td>Not present</td>
<td>Slightly developed, T12-14</td>
</tr>
<tr>
<td>Lesion 2</td>
<td>T16-18 (possibly T15 also)</td>
<td>T10-12 probably</td>
<td>T10-12; 13-15</td>
<td>Not present</td>
</tr>
<tr>
<td>Spinal column</td>
<td>Unclear because of poor preservation</td>
<td>Otherwise unclear because of poor preservation</td>
<td>Not present</td>
<td>Not present</td>
</tr>
<tr>
<td>Lesion 3</td>
<td>T13 and 15, caudal</td>
<td>T13 and 14, (most developed on T14), caudal</td>
<td>T18, caudal</td>
<td>Not present</td>
</tr>
<tr>
<td>Horizontal fissures through the caudal epiphysis</td>
<td>T14, cranial; T18, cranial</td>
<td>T13 and T14, (most developed on T14), caudal</td>
<td>Not present</td>
<td>Not present</td>
</tr>
<tr>
<td>Lesion 4</td>
<td>T16-17 small osteophytes</td>
<td>Osteophytes on T16, 17. Otherwise unclear because of poor preservation</td>
<td>Osteophytes on T16, 17.</td>
<td>Not present</td>
</tr>
<tr>
<td>Periarticular osteophytes</td>
<td>T15-T18 small osteophytes</td>
<td>Slight erosion and pitting of articular facets between T14 &amp; 15, T15 &amp; 16, T17 &amp; 18</td>
<td>Some fairly insignificant bony thickening on the processes between T13 &amp; T14, T14 &amp; T15</td>
<td>Not present</td>
</tr>
</tbody>
</table>

Description of abnormalities of thoracic vertebrae 11-19 of: Early Iron Age horses from Ak-Alakha 5 (Altai) and Lisovichi (Ukraine); medieval Turkic horses from Ak-Alakha 1 (Altai); and modern free-living Exmoor ponies. Information from Levine et al. (2000) and Levine (2004, 2005).
cation of biting damage to the lower second pre- 
molars (Figure 1) indicates that the animal was bit- 
ted, and was used for either riding or traction. 
Another non-specific indicator of work may be the 
fusion of the lateral joints of lumbar vertebrae 
transverse processes. Other changes in the post-
cranial skeleton may be used to further refine the 
interpretation of use.

Levine et al. (2000) suggest that the high inci-
dences of horizontal fissures through caudal ep-
physes of thoracic vertebrae in the Scythian horses 
(Table 2) may be related not just to the fact that 
they were ridden, but also to the way that they 
were ridden. The Pazyryk culture used pad sad-
dles, which were in essence two leather cushions 
[see Levine et al. (2000) for a more detailed 
description]. Levine et al. (2000) hypothesize that 
the weight of the rider, acting on the dorsal 
processes of the caudal thoracic vertebrae through 
the pad saddle, could have been an important fac-
 tor in the types of lesions identified in the Early 
Iron Age animals (Table 2). These saddles differ 
from frame saddles in that the weight of the rider 
acted directly onto the spinous processes of the 
caudal thoracic vertebrae through the pad saddle, 
whereas the frame saddle had no contact with the tho-
racic vertebrae (Table 1) was generally reflected in 
the rest of the skeleton of this animal (Bendrey et 
 al., forthcoming). Even though it is a relatively 
young animal, at six years of age at death, this sup-
ports the picture suggested by the Danebury horse 
of the relatively ‘light’ use made of southern 
British Iron Age horses.

The Ak-Alakha 5 horses all had fairly severe 
spondylotic spurs on the vertebrae that possess the 
fissures (and in adjacent vertebrae), whereas the 
spondylotic spurs on the Danebury specimen are 
only very minor (Figure 5). These may reflect dif-
fences in the level, as well as type, of use of the 
animals: the Early Iron Age Ak-Alakha peoples 
were a nomadic society that, from the level of 
abnormalities in the animals, made more intensive 
use of horses than the Iron Age peoples of southern 
Britain, who were sedentary farmers. None of 
the pathologies in the Danebury skeleton indicate 
a particularly heavy use of the horse, for example 
ploughing, and the good condition of the horse 
skeleton, at this advanced age, indicates only light 
use perhaps for pulling a light chariot/cart or occa-
 sional riding. As discussed above the horizontal fис-
sure in thoracic vertebra 14 could suggest the latter.

ARCHAEOLOGICAL CONTEXT: 
THE SOUTHERN BRITISH IRON AGE

It is the case that the literature places far greater 
emphasis on the use of Iron Age horses for pulling 
chariots and carts than for riding; largely, it seems, 
based on finds of two-wheeled vehicles in ‘Arras 
culture’ burials concentrated in Yorkshire, finds of 
vehicle fittings on a range of sites and Julius Cae-
sar’s descriptions of British warfare techniques 
(Cunliffe, 1991: 379 and 491-492; Cunliffe, 2003: 
73-74 and 163). Such discussions, therefore, are 
not based on the evidence of Iron Age horses them-
 selves, but rather on other sources, that may be 
more appropriately considered as evidence for a 
restricted elite burial rite (Cunliffe, 1991: 503), evi-
dence for deliberate deposition of vehicle fittings 
(Cunliffe, 2003: 147) and evidence for the practice 
of Iron Age warfare, respectively. The archaeolog-
ical visibility of chariots, therefore, are based on 
evidence heavily biased by elite associations and 
religious beliefs, and is not representative of the 
everyday functioning of an agricultural society. 
Also, many of the accoutrements of riding may not 
be archaeologically visible, for example if saddles

Archaeofauna 16 (2007): 73-84
were made of perishable materials, or if horses were ridden bareback. As such the importance of riding has probably been under-represented.

The work of Levine and colleagues, however, has provided a methodological basis whereby the uses of horses can be considered on the evidence from horse bones themselves, through the study of bony changes in the post-cranial skeleton. Although the choice of animals deposited also probably represents a biased sample, this method does look directly at the horses themselves. The application of this method to the Danebury animal indicates that the horse may have been used for riding. It must be remembered that the comparative sample size is small (Table 2), but it will only be through the publication of horses from different areas and periods that greater understanding of the development of these lesions will be achieved.

The importance of horses for riding can be envisaged in a number of areas. From the later Bronze Age onwards, as land was subdivided by boundaries and field systems and farmed (Yates, 2001; Cunliffe, 2004), horse riding may have allowed speedy and efficient access to pastoral and arable lands utilised by settlements. Cunliffe (1991: 492) states that although vehicles are known from the Hallstatt period on the continent, there is no evidence for their use in Britain at this time (the Late Bronze Age in Britain), and suggests that the light two-wheeled vehicle was probably introduced to Britain during the La Tene I period, in the late fifth or early fourth century BC. Presumably, therefore, functional use of the horse before this, without wheeled vehicles, would have consisted of riding, pulling loads without wheels or pack-use.

Horses, perhaps used to manage, and transport, agricultural and other resources, could also have been used to manage territorial control. In Middle Iron Age Wessex a small number of developed hillforts, such as Danebury and Maiden Castle, Dorset, rose to prominence over weaker settlements, establishing large controlled territories (Haselgrove, 1999). In such a scenario the speed, mobility and distances of travel enabled by horse riding could have been important for maintaining territorial control.

CONCLUSION

A number of features of the Danebury skeleton are important in interpreting the use made of the horse during its life. These are the enamel exposure on the anterior edge of the lower second premolars, the general low level of vertebral pathology and the presence of the horizontal fissure in the caudal epiphysis of thoracic vertebra 14.

The enamel exposure on the anterior edge of the lower second premolars is interpreted as damage caused by bitting, following Bendrey (in press), which indicates that the horse had been used for either riding or traction. The low level of pathology present in the Danebury horse, considering that it is a relatively old animal (c.16-18 years of age at death) suggests that the horse was not heavily used, perhaps employed to pull a light cart or chariot or occasional riding. The presence of a horizontal fissure in the caudal epiphysis of the thoracic vertebra 14 may indicate that it was used for riding, with either a pad saddle or bareback.

It is suggested that the importance of riding in the Iron Age has probably previously been under-represented in the literature, largely due to the archaeological visibility of vehicles and vehicle fittings and invisibility of riding, due to perishable materials. This can now be reassessed based upon the foundation of the methodological work and comparative analysis of Levine and colleagues (Levine et al., 2000).

ACKNOWLEDGEMENTS

I would like to thank Marsha Levine and Katherine Whitwell for discussing their work and the skeleton with me and Kay Ainsworth and David Allen (Hampshire County Council Museums Service) for allowing me access to the Danebury archive.

REFERENCES


